Proteum/FL: a Tool for Localizing Faults using Mutation Analysis

Mike Papadakis*, Marcio E. Delamaro!, Yves Le Traon*
*Interdisciplinary Center for Security, Reliability and Trust (SnT), University of Luxembourg
Email: {michail.papadakis, yves.letraon} @uni.lu
tInstituto de Ciéncias Matemdticas e de Computagdo, Universidade de Sdo Paulo, Sdo Carlos, SP, Brazil
Email: delamaro@icmc.usp.br

Abstract—Fault diagnosis is the process of analyzing pro-
grams with the aim of identifying the code fragments that are
faulty. It has been identified as one of the most expensive and
time consuming tasks of software development. Even worst,
this activity is usually accomplished based on manual analysis.
To this end, automatic or semi-automatic fault diagnosis
approaches are useful in assisting software developers. Hence,
they can play an essential role in decreasing the overall
development cost. This paper presents Proteum/FL, a mutation
analysis tool for diagnosing previously detected faults. Given
an ANSI-C program and a set of test cases, Proteum/FL
returns a list of program statements ranked according to their
likelihood of being faulty. The tool differs from the rest of
the mutation analysis and fault diagnosis tools by employing
mutation analysis as a means of diagnosing program faults.
It therefore demonstrates the effective use of mutation in
supporting both testing and debugging activities.

Keywords-Mutation analysis; fault localization; software de-
bugging; software testing;

I. INTRODUCTION

Detecting and fixing program faults forms an essential and
expensive task of software development. Developers rely on
software testing for identifying program flaws and software
debugging for diagnosing and removing them. The process
of identifying flawed program parts given some failures is
usually referred to as fault localization. This process takes
place just after identifying program failures and is one of
the most expensive activities of software debugging [1].

Mutation analysis forms a powerful technique usually
used for driving the testing process. Generally, it seeds
some defects into the program under investigation in order
to examine its behavior. Considering the testing process,
finding artificial defects allows the effective detection of real
faults. This practice has been empirically shown to be more
effective than using classical test selection criteria (e.g. based
on code coverage). In view of this, the present paper explores
the idea of using artificial defects as a means of diagnosing
real defects. Therefore, mutation analysis is employed in
order to guide the fault localization process.

Existing fault localization techniques assist programmers
by ranking program locations according to their probabil-
ity of being responsible for the experienced failures. The
underlying idea of these approaches is to compare the

978-1-4673-5739-5/13/$31.00 (© 2013 IEEE

similarity between the execution of these code places and the
observed failures. Researchers have provided evidence that
these approaches are helpful in reducing the cost involved
in the debugging activity [2], [3].

Testing using mutation analysis involves designing and
executing tests with a set of artificial faults called mutants.
The main assumption of the method is that the utilized
defects (mutants), despite being artificial defects, behave like
real faults. Evidence in support of such a proposition have
been given by Andrews et al. [4]. Furthermore, software
testing research has successfully demonstrated that detecting
mutants results in detecting real faults. Therefore, it can be
asked: what is the relation between the mutants’ location and
the existing faults? Is there any link between the mutants’
location with the location of the faults?

The paper presents Proteum/FL a tool that localizes faults
using mutation analysis and thus, answering the above
questions. The tool was initially used in the work of Pa-
padakis and Le Traon [5] for defining a mutation-based fault
diagnosis approach and it can be used to support both testing
and diagnosis activities. Previous research on this topic
[5] has shown that the implemented approach significantly
outperforms the coverage-based fault localization techniques
and opens a new direction, mutation-based debugging, to the
mutation analysis research.

The remainder of this paper is organized as follows:
Section II presents the concepts and details regarding the
mutation analysis. Section III and IV respectively introduce
fault localization using mutation analysis and describe the
implementation details of Proteum/FL. Finally, the relevance
of Proteum/FL with other tools and the conclusions made
during this research are discussed in Sections V and VI
respectively.

II. MUTATION ANALYSIS

Mutation analysis injects artificial defects into the pro-
gram under investigation with the aim of examining its
behavior when executed with some test cases. These defects
are called mutants and they are generated by using a set
of simple syntactic rules, called mutant operators. Mutants
are traditionally utilized to facilitate the testing process here
referred to as mutation testing. Proteum [6] is a mutation
testing tool that aims at automating the testing process of

C programs. This section gives a brief description of the
mutation testing process, the supported mutant operators and
the Proteum mutation testing system.

A. Mutation Testing

Software testing involves the examination of a program by
executing a set of test cases. However, in practice there is a
need to evaluate the appropriateness of the utilized test sets.
Further, in case that the utilized test sets are not adequate,
there is a need to guide the design of new test cases. To this
end, mutation testing aims at guiding the testers to design
sets of test cases and evaluate their adequacy.

Mutation testing requires tests capable of making the
seeded defects observable. To this end, a comparison of the
programs’ outputs is needed in order to decide whether a
difference in behavior between the original and the mutant
program versions has been triggered. In such cases, the
mutants are said killed, otherwise they are said live. Testing
adequacy is measured by the percentage of mutants that
are killed by the utilized tests. Unfortunately, not all the
mutants can be killed. A mutant for which there is no test
data that distinguish its behavior from the original program is
said equivalent. Therefore, testing adequacy, called mutation
score (MS), is measured by the following value:

No. killed mutants

MS =
No. mutants — No. equivalent mutants

Generally, mutation testing relies on the quality of the
involved mutants [7]. The application of the method relies on
two hypothesis, the “competent programmer” and the “cou-
pling effect” [7]. The “competent programmer” hypothesis
states that the programmers produce programs that are close
of being “correct”. Thus, only small changes are necessary to
effectively exercise the program under test. The “coupling
effect” hypothesis states that “Test data that distinguishes
all program differing from a correct one by only simple
errors is so sensitive that it also implicitly distinguishes
more complex errors”. Since mutants represent simple faults,
the above hypothesis suggests that killing mutants results in
revealing both simple and complex faults.

B. Mutation Operators

Proteum employs mutation operators targeting at unit and
integration testing faults [8]. The unit-level operators were
designed based on the study of Agrawal et al. [9] while the
integration testing operators were designed according to the
study of Delamaro et al. [8]. Here it should be noted that the
focus of the present paper is on locating unit level faults and
thus, mutants related to integration testing are not discussed.
The employed operators are divided into four main cate-
gories (classes): a) STATEMENT b) VARIABLES, c¢) CON-
STANTS and d) OPERATORS. The STATEMENT class
contains operators that alter an entire statement or its key
syntactic elements. The VARIABLES and CONSTANTS

classes contain operators regarding program identifiers and
constants, respectively. They model incorrect variable and
constant uses. The OPERATORS class contains operators
that alter the programming language operator use.

C. Proteum & Proteum/IM

Proteum [6] is among the firstly and most popular mu-
tation testing tools. Originally, it was designed to perform
mutation at the unit level by utilizing the mutant operators
described in the previous section. It was then extended and
named as Proteum/IM, to support both unit and integration
testing by utilizing the Interface Mutation [8] approach. A
detailed description of the functionality and the implemen-
tation of the Proteum/IM tool can be found at [6]. The
latest version of Proteum/IM was recently released as an
open source software under the “GNU GENERAL PUBLIC
LICENSE”. It is this version of the tool that it is extended
by Proteum/FL and can be found at:

http : / /cesl.icme.usp.br /projects/proteum

III. PROTEUM/FL FAULT LOCALIZATION PROCESS

Fault localization is the process of identifying the pro-
gram places which are responsible for provoking program
failures. Typically, fault localization is performed after the
testing process. Generally, the testing process involves the
design, execution of some test cases and the determination
of whether the program behaves as expected. A failure
is experienced when the output of a test differs from the
expected one, as specified by the tester. The test that results
in a failure is called a failed test. In the opposite case, the test
is called as a passed test. To this end, fault localization tries
to identify the program places that are responsible for the
program failures given a set of failed tests and a set of pass
tests. These tests are those used during the testing process.
They might have been produced using a test strategy like
[10], in a semi-automated way i.e. [11], [12] and [13] or in
a manual way. Therefore, given a test suite, fault localization
tries to highlight the program statements that are likely to
be faulty. Then, the tester will inspect these statements in
order to identify the faulty program location.

The underlying idea of most fault localization approaches
is to define a suspiciousness metric that measures the prob-
ability of a statement to be faulty. The definition of the sus-
piciousness metric is based on the observation that program
failures are the manifestation of faults. Thus, it is natural to
expect that failed tests execute program places that correlate
with faults. On the contrary, passed tests should execute
program places that do not correlate with faults. In view
of this, most of the fault localization approaches try to mea-
sure the similarity/dissimilarity between the failed/passed
tests with the execution of program statements. Among
the various similarity measures Proteum/FL uses the Ochiai
formula (presented in Table I) [14]. Ochiai is one of the
most popular measures and it has been empirically found to

Table I
THE OCHIAI FORMULA

failed(e)

Susplcwusness(e) = \/totfailed*(failcd(e)+passed(e))

Where: Suspiciousness(e) is the probability of code element e to be
faulty. totfailed is the total number of failed tests, failed(e) is the number
of failed tests that cover (kill) the e code element (mutant) and passed(e)
the number of pass tests that cover (kill) the e code element (mutant).

be one more effective than some other alternatives. Here, it
should be noted that other measures could be used as well.
The interested reader can refer to [15] for further details.

Despite the research made in the area of fault local-
ization, existing approaches are far from satisfactory in
many situations. This is due to the so-called coincidental
correctness problem [16]. Coincidental correctness occurs
when tests execute the faulty elements but fail to manifest it
to a failure. Therefore, the similarity measure between the
failed/passed tests with the execution of program statements
turns to be missleading. To improve the effectiveness of fault
localization, it has been proposed to use mutation analysis
[5]. Contrary to structural testing criteria, mutation works
with the programs’ outputs (it requires the mutants to have
an effect to the program output). As a consequence, it can
simulate well situations having coincidental correctness.

Fault localization using mutation analysis measures the
similarity between the test failed/passed with their respective
results on kill/live mutants [5]. To accomplish this, any
similarity measure can be used [15]. As pointed out before,
Proteum/FL uses the Ochiai formula for this purpose by
considering the mutants as the formula elements (e). The aim
of the process is to measure the similarity between failures
and killed mutants. Thus, in Table I the “execute the e code
element” requirement represents a mutant that is killed [5].
Therefore, for each mutant (e) a suspiciousness value is
assigned. These values are then ranked in order to get a
priority list with respect to decreased suspiciousness values.
Since every mutant is created based on syntactic changes, a
direct mapping from mutants to program statements can be
made. If a mutant alters more than one statements, all these
are assigned with the same suspicious value.

The overall fault localization approach is outlined in
Figure 1. This approach is implemented in the Proteum/FL
tool. The description given in the following section concerns
the adaptation of Proteum mutation testing tool (see Section
I.B) to effectively localize faults.

IV. PROTEUM/FL

Proteum/FL supports the entire fault localization process
using mutation analysis as described in [5]. It automatically
performs the generation and execution of mutants and it also
reports the suspicious program statement list. This section

describes the implementation of the tool, its functionality
and some important optimization techniques that it uses.

A. Description

Automatically performing mutation analysis with Pro-
teum/FL requires some parameters to be specified. The
user can specify the mutant operators that are going to be
used and the way (command or script) that the mutants
should be compiled. Additionally, the user need to specify a
comparison method that will be used to determine the killed
and live mutants. By default, a comparison is made based on
the programs resulting values and its printable output. This
can be extended by defining a program specific method like
comparison of output files etc. The definition can be a perl
or shell script. The tool will then automatically do all the
required tasks to report the suspicious program statements
to the tester.

Proteum/FL has been implemented in Perl and works as
a command line tool. It implements the mutants generation,
execution and fault localization tasks as described in the next
section. The high level architecture is depicted in Figure 2.
It consists of three main components: Proteum, the Mutant
Generation and the Test Execution Engine components. The
Proteum component is actually the command line interface
of the Proteum/IM tool. It takes as input a C program and
produces the mutants’ description file [6]. This file contains
information containing the definition of each mutant, its
program location, its type and its identification number.
This file is then used by the Mutant Generator component
in order to generate and compile the sought mutants. To
accomplish this task, GCC! and Gcov? tools are used. Geov
is employed for collecting trace information of the original
program and the executable program statements. GCC is
used for compiling the mutants. The mutants and the original
programs are passed to the Test Execution Engine which
performs the execution of the mutants with the available
tests and produces a suspicious statement report.

B. Functionality of Proteum/FL

The Proteum/FL tool provides the infrastructure for locat-
ing program faults by performing the following steps:

Mutant selection: Proteum/FL applies by default all
supported mutant operators. However, it is possible to use
a smaller set of mutants or operators. This practice often
results in similar results with the default one, with a lower
computational cost. Thus, the user can specify a selective
set of operators to apply. Alternatively the user can select
applying a random percentage of mutants.

Generate mutants: Proteum/FL relies on the Proteum/IM
[6] to identify the possible mutants by generating the mu-
tants’ description file [6]. Proteum/FL then reads both the
source code of the program under test and the mutants’

!GNU Compiler Collection, http://gcc.gnu.org/
2Gcov is a GNU code coverage tool part of GCC

Execute Mutants

Rankin .
Program mutantg Ranking
under test Mutants Statements
Tester
1
- m2

] [Fle==>][} [¥]

Proteum/FL fault Localization process: Initially, a set of mutants is produced. These mutants are then executed with all the available test cases

Figure 1.

in order to determine which ones are killed by each one of the utilized test cases. Then a similarity comparison between the failed/passed test cases and the
killed/live status of each mutant is performed using the Ochiai formula (I). Then, all the mutants are ranked according to the similarity values computed
in previous step. Finally, a ranking list of statements is obtained based on the ranking of mutants and it is reported to the tester.

Program

Under Test

—b :
Mutant Test Execution
Proteum > Mutant Mutants -
Description Generator Engine

b

Suspiciousness
Report

=1

Figure 2. Proteum/FL Architecture

description file and produces the mutants’ source code. It
actually produces and compiles one source file per mutant. In
literature this technique is called separate compilation [17]
or compiler-based [18] technique. Although, more advanced
techniques exists like Mutant Schemata [7], [17] it was
chosen due to its implementation simplicity. Further, by
doing so it is possible to construct a test harness. In the
test harness technique [17] “each mutant is compiled into
a shared library that can be dynamically invoked by a test
harness”. Thus, during the test execution mutants can be
efficiently invoked [17] resulting in a reduced execution cost.

Execute mutants: Proteum/FL takes as inputs the failed
and passed test cases and executes all the mutants with
all tests as required by the mutation analysis technique. It
then produces a matrix containing the information of which
mutants are killed by each test. This is a computationally
expensive part of the process. To efficiently perform it Pro-
teum/FL implements a wide range of optimizations. These
are detailed in the next section (Optimizing the Execution

of Mutants).

Collect & analyze data: Proteum/FL reads the produced
matrices and generates the Suspiciousness Report. This is
performed based on the use of the Ochiai formula (Table I).

Rank program statements: Proteum/FL aim is to report
the tester a ranked list of program statements. This list assist
the tester in locating the program faults by inspecting the
most suspicious program statements first. Figure 3 depicts
the suspicious statement report produced by the Proteum/FL
on a sample program. This report, contains the information
about the line of the statements, their suspicious values and
the mutants that have these suspiciousness values. It is noted
that the statements are ranked according to a decreased
suspicious order. Thus, in the report of Figure 3, the most
suspicious statement has a suspiciousness value 1.0. This
value is assigned to the line 298 based on the suspiciousness
of the mutants 1075, 1053 etc.

Line 288, Susp:1.0, Mutant=1075.1053,912,951,950,948 953,958 957 956,679,728,
752,743

Line 275, Susp:0.74535580924555280, Mulani=242

Line 301, Susp:0.4B666426339228763, Mutant=77 8,781,780, 783,795,796, 798, 790,
791.811.808,812,806 817 759,758 763

Line 28%, Susp:0.47140452079103173, Mutant=461,462

Line 271, Susp: 0.3849001794597505, Mutant=179

Line 366, Susp:0.3636964837266, Mutan'=2869, 2681, 2503, 2618,2619,2555,2466
Line 2%, Susp:0.3585685828003181, Mutant=1057.702

Line 282, Susp:0.2431083191631576, Mutant=555

Line 307, Susp:0.2401922307076307, Mutant=1051

Line 324, Susp:0.218844054 76620425, Mutant=1900

Line 328, Susp:0.2132007163556104, Mutant=1654

Line 329, Susp:0.18534061896456486, Mutant=1583,1630

Line 283, Susp:0.1819017 1877724975, Mutant=540.526

Line 363, Susp:0.1770844008302866, Mutant=2416

Line 281, Susp:0.1767766952966368, Mutant=550

Line 315, Susp:0.174371458 115672883, Mutani=1182

Line 311, Susp:0.167 18346377260584, Mutant=1121

Line 337, Susp:0.16539535392500136, Mutant=1777,1427,1426,1240,1239,1238
Line 334, Susp:0.16012815380508713, Mulani=2086

Line 332, Susp:0.13483997 2409264842, Mutant=2062

Line 362, Susp:0.13456839120487699, Mutant=2804

Line 330, Susp:0.13143238630149706, Mutant=1817

Line 361, Susp:0.12734200799340264, Mutant=2396

Line 323, Susp:0.12067 769800636245, Mutant=1796

Line 365, Susp:0.1178511301977579, Mutani=2551,2552

Line 326, Susp:0. 11080752827 206766, Mutani=1808, 1814

Line 339, Susp:0.10027894056973133, Mutant=2250

Line 322, Susp:0.09037 128496931669, Mutant=1791

Line 357, Susp:0.08806109155784352, Mutant=2512,2511

Line 345, Susp:0.07552100405338, Mutant=2870,2635 2631, 2629, 2628, 2625, 2686,
2620,2622,2715 2714 27192018, 2717 2716, 2720,2721 2722 2723 2724 2725, 24596,
2487 2486 2485 2484 2483 2482 2481, 2495 2494 7483 2492 2491 2490 24589 2488
Line 325, Susp:0.07552100405338862, Mutant=2175,1731,1771,1396.1387

Line 265, Susp:0.07552100405338862, Mutant=107,20,18,16,15

Line 264, Susp:0.07552100405338862, Mutant=106.6,4,2.0

Line 267, Susp:0.07552100405338862, Mulani=109,48 45 47 43

Line 266, Susp:0.07552100405338862, Mutant=108,32,34 31 29

Line 364, Susp:0.07552100405338862, Mutant=2655 2705, 2428

Line 359, Susp:0.07552100405338862, Mutant=2650,2700,2363

Line 360, Susp:0.07552100405338862, Mutant=2651,2701 2376

Line 358, Susp:0.07552100405338862, Mutani=2648, 2658 2350

Line 355, Susp:0.07552100405338862, Mutant=2646 26956,2311

Line 356, Susp:0.07552100405338862, Mutant=2647 2697, 2324

Line 367, Susp:0.07552100405338862, Mutant=2658 2682, 2708

Line 354, Susp:0.07552100405338862, Mulant=2645,2695

Line 368, Susp:0.07552100405338862, Mulant=2709

Figure 3. Statement Suspiciousness report

C. Optimizing the Execution of Mutants

Performing mutation analysis requires executing the tests
with a huge number of mutants. This process aims at
determining the mutants that are killed by each one of the
utilized tests and it involves vast computational resources. In
order to be efficient, Proteum/FL implements the following
optimizations:

Coverage data: Generally, a mutant not executed by a test
case has no chance of being killed and thus, its execution
results in a waste of time. In view of this, test execution
should only focus on mutants that are executed, i.e. test
execution reaches the mutated program statement, by a test
case. To do it so, Proteum/FL collects execution traces from
the original program and executes only those mutants that
are reached by each test case.

Parallel Execution: Proteum/FL takes advantage of the
parallel and distributed capabilities of the modern computers
and thus, it performs a parallel execution of mutants. Since
each test is independent of the remaining ones, Proteum/FL
assigns one test execution task per utilized process.

Relevant Mutants: Generally, mutants not killed by
failed tests do not contribute to the fault localization process
and hence they can be ignored. Proteum/FM mutant execu-

tion is divided into two stages: the failed tests execution and
passed tests execution. It first executes the failed tests and
then executes the passed tests by considering the mutants
killed by the failed test cases.

The first and second optimizations are usual optimizations
implemented in several mutation testing tools. However,
none of the existing mutation testing tools targets fault
localization which is the main aim of Proteum/FL. The last
optimization is dedicated to the fault localization process
and thus, there is no other tool doing something similar.

V. RELATED WORK

There is a relatively large number of approaches and tools
regarding fault localization. However, there is no other tool
to the authors’ knowledge that uses mutation analysis to
support fault localization.

Mutation analysis is an active research field since 1970s
with an increased popularity over the last years [7]. Despite
this, only a relatively small number of mutation testing tools
exists. Here, a brief description of the most representative
tools is given by highlyting their unique characteristics.

As described before, Proteum/IM is one of the first and
most popular tools for C programs. It has the main advantage
of implementing all the proposed unit [9] and integration [8]
level mutation operators. Recently, another tool named Milu
[18] has been proposed for C programs. Milu implements a
different approach to perform mutation testing based on the
notion of higher order mutants. First order mutants are those
produced based on one simple syntactic change. Higher
order mutants are the combination of one or more first order
mutants [7]. Mutation testing tools also exist for the Java
programming language. MuJava [17] is one of the most
popular tools. Currently it is the only tool that implements
specially designed mutation operators for the Java Object
Oriented features.

Regarding fault localization, one of the first attempts is
Tarantula [2]. Tarantula uses statement coverage informati
on to prioritize program statements according to their sus-
piciousness. Tarantula approach was later extended in order
to include various similarity formulas like the Ochiai [14]
and [15]. Later, this approach was generalized in order
to include other program constructs like program branches
[19], definition-use pairs [19] and combinations of them
[19]. Other similar tools like Zoltar use Bayesian reasoning
[20] for prioritizing suspicious program statements.

VI. CONCLUSION

The present paper introduced a fault localization tool
named Proteum/FL. The innovative part of this tool is the
use of mutation analysis for fault localization. The tool
supports a comprehensive set of mutant operators specially
designed for the C programming language. Additionally,
it implements a wide set of optimizations techniques for
reducing the mutants’ execution cost.

The current version of the tool aims at solving a sig-
nificant and challenging problem of software debugging. It
enables a new direction of research, the use of mutation
analysis for supporting software debugging activities like
fault localization. We believe that Proteum/FL also opens
the way for unifying the testing and debugging activities in
a complementary way. In view of this, mutation analysis can
be utilized for driving both the testing and debugging pro-
cesses. This practice merges the application cost of testing
and fault localization and results on reducing significantly
the debugging effort [5].

Future releases of the tool will integrate recently de-
veloped test generation techniques like dynamic symbolic
execution [11], [12] search based testing [12] and path
based testing [13] towards assisting fault localization [21].
Additionally, the incorporation of the tool with an integrated
development environment is also planed.

To learn more about Proteum/FL, refer to:

https://sites.google.com/site/mikepapadakis/proteum-fl

REFERENCES

[1] I Vessey, “Expertise in debugging computer programs: A pro-
cess analysis,” International Journal of Man-Machine Studies,
vol. 23, no. 5, pp. 459 — 494, 1985.

[2] J. A. Jones and M. J. Harrold, “Empirical evaluation of
the tarantula automatic fault-localization technique,” in Pro-
ceedings of the 20th IEEE/ACM international Conference on
Automated software engineering (ASE ’05), 2005, pp. 273—
282.

[3] S. Ali, J. H. Andrews, T. Dhandapani, and W. Wang, “Eval-
uating the accuracy of fault localization techniques,” in Pro-
ceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering (ASE "09), 2009, pp. 76-87.

[4] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin,
“Using mutation analysis for assessing and comparing testing
coverage criteria,” I[EEE Trans. Softw. Eng., vol. 32, no. 8, pp.
608-624, Aug. 2006.

[5] M. Papadakis and Y. Le Traon, “Using mutants to locate
“unknown” faults,” in Proceedings of the 2012 IEEE Fifth
International Conference on Software Testing, Verification
and Validation (ICST ’12), 2012, pp. 691-700.

[6] M. E. Delamaro and J. C. Maldonado, “Mutation testing for
the new century.” Kluwer Academic Publishers, 2001, ch.
Proteum/IM 2.0: An Integrated Mutation Testing Environ-
ment, pp. 91-101.

[7]1 Y. Jia and M. Harman, “An analysis and survey of the
development of mutation testing,” IEEE Trans. Softw. Eng.,
vol. 37, no. 5, pp. 649-678, Sep. 2011.

[8] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur, “In-
terface mutation: An approach for integration testing,” IEEE
Trans. Softw. Eng., vol. 27, no. 3, pp. 228-247, Mar. 2001.

91

(10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W. Hsu,
E. W. Krauser, R. J. Martin, A. P. Mathur, and E. Spaf-
ford, “Design of mutant operators for the ¢ programming
language,” Purdue University, West Lafayette, Indiana, techre-
port SERC-TR-41-P, March 1989.

M. Kintis, M. Papadakis, and N. Malevris, “Evaluating
mutation testing alternatives: A collateral experiment,” in
Proceedings of the 2010 Asia Pacific Software Engineering
Conference, ser. APSEC ’10, 2010, pp. 300-309.

M. Papadakis and N. Malevris, “Automatic mutation test case
generation via dynamic symbolic execution,” in Proceedings
of the 2010 IEEE 21st International Symposium on Software
Reliability Engineering (ISSRE ’10), 2010, pp. 121-130.

——, “Automatically performing weak mutation with the
aid of symbolic execution, concolic testing and search-based
testing,” Software Quality Journal, vol. 19, pp. 691-723,
2011.

——, “Mutation based test case generation via a path selec-
tion strategy,” Inf. Softw. Technol., vol. 54, no. 9, pp. 915-932,
Sep. 2012.

R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On
the accuracy of spectrum-based fault localization,” in Pro-
ceedings of the Testing: Academic and Industrial Conference
Practice and Research Techniques - MUTATION (TAICPART-
MUTATION °07), 2007, pp. 89-98.

L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for
spectra-based software diagnosis,” ACM Trans. Softw. Eng.
Methodol., vol. 20, no. 3, pp. 11:1-11:32, Aug. 2011.

W. Masri and R. A. Assi, “Cleansing test suites from coinci-
dental correctness to enhance fault-localization,” in Proceed-
ings of the 2010 Third International Conference on Software
Testing, Verification and Validation (ICST ’10), 2010, pp.
165-174.

Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: an automated
class mutation system: Research articles,” Softw. Test. Verif.
Reliab., vol. 15, no. 2, pp. 97-133, Jun. 2005.

Y. Jia and M. Harman, “Milu: A customizable, runtime-
optimized higher order mutation testing tool for the full
¢ language,” in Proceedings of the Testing: Academic &
Industrial Conference - Practice and Research Techniques
(TAIC-PART °08), 2008, pp. 94-98.

R. Santelices, J. A. Jones, Y. Yu, and M. J. Har-
rold, “Lightweight fault-localization using multiple coverage
types,” in Proceedings of the 31st International Conference
on Software Engineering (ICSE °09), 2009, pp. 56-66.

T. Janssen, R. Abreu, and A. J. van Gemund, “Zoltar: a
spectrum-based fault localization tool,” in Proceedings of
the 2009 ESEC/FSE workshop on Software integration and
evolution @ runtime (SINTER ’09), 2009, pp. 23-30.

B. Baudry, F. Fleurey, and Y. Le Traon, “Improving test suites
for efficient fault localization,” in Proceedings of the 28th
international conference on Software engineering (ICSE "06),
2006, pp. 82-91.

