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We introduce SEMu, a Dynamic Symbolic Execution technique that generates test inputs capable of killing

stubborn mutants (killable mutants that remain undetected after a reasonable amount of testing). SEMu aims

at mutant propagation (triggering erroneous states to the program output) by incrementally searching for

divergent program behaviours between the original and the mutant versions. We model the mutant killing

problem as a symbolic execution search within a specific area in the programs’ symbolic tree. In this framework,

the search area is defined and controlled by parameters that allow scalable and cost-effective mutant killing.

We integrate SEMu in KLEE and experimented with Coreutils (a benchmark frequently used in symbolic

execution studies). Our results show that our modelling plays an important role in mutant killing. Perhaps

more importantly, our results also show that, within a two-hour time limit, SEMu kills 37% of the stubborn

mutants, where KLEE kills none and where the mutant infection strategy (strategy suggested by previous

research) kills 17%.
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1 INTRODUCTION
Thorough testing is often required in order to assess the core logic and the ‘critical’ parts of the

programs under analysis. Unfortunately, performing thorough testing is hard, tedious and time

consuming.

To support thorough testing, mutation testing aims at guiding the design of test cases that are

likely fault revealing. The key idea of mutation is to use artificially introduced defects, called

mutations, to identify untested (or weakly tested) cases and to guide test generation. Thus, testers

can improve their test suites by designing mutation-based test cases, i.e., test that reveal the

artificially introduced defects.

The mutation testing practice has shown that it is relatively easy to detect a large number of

mutants by simply covering the mutated statements [2, 25, 33]. Such trivial mutants are not useful

as they fail to provide any particular guidance towards test case design [35]. However, practical

experience has also shown that there are some few mutants that are relatively hard to detect (a.k.a.

stubborn mutants [41]) and can provide significant advantages when used as test objectives [33, 41].

Interestingly, these mutants form special corner cases that when tested often reveal faults [39?
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]. The importance of using the stubborn mutants as test objectives has also been underlined by

several industrial studies [6, 9] including a large study with Google developers [33].

Stubborn mutants are hard to detect mainly due to a) the difficulty of infecting the program state

(causing an erroneous program state when executing the mutated/defective point) and b) due to the

masking effects that prohibit the propagation of erroneous states to the program output (aka failed

error propagation [5] or coincidental correctness [1]). Either being the case, the issues linked with

these mutants form corner cases which are most likely to escape testing (since stubborn mutants

form small semantic deviations) [39].

Killing stubborn mutants (designing test cases that reveal undetected mutants) is challenging

due to the large number of potential program execution paths, constraints and data states of the

program versions (original and mutant versions) that need to be differentially analysed. The key

challenge here regards the handling of the failed error propagation (masking effects), which is

prevalent in stubborn mutants. Effective error propagation analysis is still an open problem [27, 34]

as it involves state comparisons among the mutant and the original program executions that grow

exponentially with the number of the involved paths (from the mutation point to the program

output).

Many techniques targeting mutation-based test generation have been proposed [4, 27, 36]. Most

of these techniques focus on generating unit-level test suites from scratch, mainly by either covering

the mutated point or by causing an erroneous program state at the mutation point. Interestingly,

there is no work leveraging the value of existing tests to perform thorough testing by targeting

stubborn mutants, which are mostly hard to propagate. Moreover, none of the available symbolic

execution tools generate test inputs by targeting the strongly killing of mutants
1
.

We present SEMu, an approach based on dynamic symbolic execution that generates test inputs

capable of killing stubborn mutants. The particular focus of SEMu is on the effective and scalable

handling of mutant propagation. Our technique executes both the original and mutant program

versions with a single symbolic execution instance, where the mutant executions are “forked” when

reaching the mutation points. The forked execution follows the original one and compares with it.

The comparisons are performed based on the involved symbolic states and related (propagation)

constraints that ensure execution divergences that are probably leading to divergent behaviours.

A key issue with both symbolic execution and mutation testing regards their scalability. To

account for this problem, we develop a framework that allows defining the mutant killing problem

as a search problem within a specific area around the mutation points. This area is defined by

a number of parameters that control the symbolic exploration. We thus, perform a constrained

symbolic exploration, starting from a pre-mutation point (a point in the symbolic tree that is before

the mutation point) and ending at a post-mutation checkpoint (a point after the mutation point)

where we differentially compare the symbolic states of the two executions (forked and original)

and generate test inputs.

We assume the availability of program inputs that can reach the areas we are targeting. Based

on these inputs, we infer preconditions (a set of consistent and simplified path conditions), which

we use to constrain the symbolic exploration to only a subset of program paths that are relevant

to the targeted mutants. To further restrict the exploration to a relevant area, we systematically

analyse the symbolic tree up to a relatively small distance from the mutation point (performing a

shallow propagation analysis).

To improve the chances for propagation we also perform a deep exploration of some subtrees.

Overall, by controlling the above parameters we can define strategies with trade-offs between

1
A list of test generation techniques can be found in the related surveys of mutation testing [27, 36]
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depth and deepness. Such strategies allow the differential exploration of promising code areas,

while keeping their execution time low.

We integrate SEMu2 into KLEE [7] and evaluate it on 47 programs from Coreutils, real-world

utility programs written in C. We also compare SEMuwith the mutant infection strategy, denoted as

infection-only, that was proposed by previous work [15, 42]. Our results show that SEMu achieves

significantly higher killing rates (approximately +37% and +20%) of stubborn mutants, for both

KLEE (alone) and infection-only strategy, on the majority of the studied subjects.

In summary, our paper makes the following contributions:

(1) We introduce and implement a symbolic execution technique for generating tests that kill

stubborn mutants. Our technique leverages existing tests in order to perform a deep and

targeted test of specific code areas.

(2) We model the mutant killing as a search problem within a specific area (around the mutation

point). Such a modelling allows controlling the symbolic execution cost, while at the same

time allows forming cost-effective heuristics.

(3) We report empirical results demonstrating that SEMu has a strong mutant killing ability,

which is significantly superior to KLEE and other mutation-based approaches.

The paper is organized as follows. Section 2 presents the targeted problem, the working scenario

of our work, the symbolic program repesentation, used through the paper and an overview of

symbolic execution, as implemented in our work. Section 3 provides our modelling approach of

the problem of killing mutants, where exhaustive exploration, conservative search space pruning,

and heuristic search are presented. Section 4 presents the cost-control heuristics used to form

our heuristic search-based mutant killing modelling approach. The empirical evaluation of our

approach, including the reserach questions, experimental setup and procedure, employed tools and

subjects, is presented in Section 5. The results of the empirical evaluation are presented in Section

6. The related work is discussed in Section 7. Section 8 concludes this work.

2 CONTEXT
Our work aims at the automatic test input generation for selected methods/components of the

systems under test. In particular, our working scenario assumes that testers have performed some

basic testing and want to dig into some specific parts of the program. This is a frequent scenario

used to increase confidence in the critical code parts (encode the core program logic) or on parts

that testers feel uncertain. To do so, it is reasonable to use mutation testing by adding tests that

detect the surviving mutants (mutants undetected by the existing test suite) [35, 41].

We consider a mutant as detected (killed) by a test when its execution leads to a different

observable output from that off the original program. According to our scenario, the targeted

mutants are those (killable) that survive a reasonable amount of testing. This definition depends on

the amount of the performed testing; strong test suites kill more mutants than weak ones, while

‘adequate’ test suites kill them all [3, 41].

To adopt a baseline for basic or ‘reasonable amount of testing’ we augment the developer test

suites with KLEE. This means that the stubborn mutants are those that are killable and survive the
developer and coverage-guided automatically generated test suites. The surviving mutants form the

objectives for our test generation technique.

2.1 Symbolic Encoding of Programs
Independently of its language, we define a program as follows.

2
Publicly available at https://github.com/thierry-tct/KLEE-SEMu.
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Definition 2.1. A program is a Labeled Transition System (LTS) P = (C, c0,Cout ,V , eval0,T )
where:

• C is a finite set of control locations;

• c0 ∈ C is the unique entry point (start) of the program;

• Cout ⊂ C is the set of terminal locations of the program;

• V is a finite set of variables;

• eval0 is a predicate capturing the set of possible initial valuations of V ;

• T : C × GC → C is a deterministic transition function where each transition is labeled

with a guarded command of the form [д]f where д is a guard condition (i.e., a formula in

first-order logic) over V and f is a function updating valuation of variables V . GC denotes

the set of labels of the transition system, that is, the set of guarded commands over V . Thus,

(ci , [дi ]fi , ci+1) means that the program execution can move from location ci to location ci+1
if condition дi is satisfied. When it does, the program updates the variables’ value according

fo fi .

The LTS modelling a given program defines the set of control paths from c0 to any cout ∈ Cout . A

path is a sequence of n connected transitions πP = ⟨(c0,дc0, c1), . . . , (cn−1,дcn−1, cn=out )⟩ such that

(ci ,дci , ci+1) ∈ T for all i . Any well-terminating execution of the program goes through one such

path. Since we consider deterministic programs, this path is unique and determined by the initial

valuation, i.e., the test input, v0 of the variables V . More precisely, each path πP defines a path
condition ϕ (πP ) which symbolically encodes all executions going through πP . This path condition

consists of a Boolean formula such that the test with inputv0 executes through πP iffv0 |= ϕ (πP ). By
solving ϕ (πP ) (e.g. with a constraint solver like Z3 [8]), one can obtain an initial valuation satisfying

the path condition, thereby obtaining a test input that goes through the corresponding program

path. The execution of the program, with the resulting test input, is a sequence of n + 1 couples of
variable valuations and locations, noted τ(P,v0 ) = ⟨(v0, c0), . . . , (vn−1, cn−1), (vn=out , cn=out )⟩, such
that v0 |= eval0 and for all i , vi |= дi and vi+1 = fi (vi ). While vout is the valuation of all variables

when τ(P,v0 ) terminates, the observable result of τ(P,v0 ) (its output), notedOut (τ(P,v0 ) ), is the subset
of vout restricted only to all observable variables. Since a path π encompasses a set of executions,

we can also represent the set of outputs of those executions into a symbolic formula Out (π ).

2.2 Symbolic Encoding of Mutants
A mutation alters or deletes a statement of the original program P. Thus, a mutant results from

changing the transitions of P that correspond to that statement, i.e., two transitions for branching

statements; one for the others.

Definition 2.2. Let P = (C, c0,V , eval0,T ) be an original program. A mutant of P is a program

M = (C, c0,V , eval0,T ′) with T ′ = (T \Tm ) ∪T ′m such that:




Tm ⊆ T ∧ |Tm | > 0

∀(c1, [д
′
]f ′, c ′

2
) ∈ T ′m ,∃(c1, [д]f , c2) ∈ Tm : ([д′]f ′ , [д]f ) ∨ (c ′

2
, c2)}

Here, Tm is the subset of the transitions of P that are mutated to createM, and T ′m is the subset of

transitions ofM that result from the mutation of Tm . Thus,M is created by replacing Tm , in P,
by T ′m .

It may happen that a programmutation leads to an equivalent mutant, i.e., semantically equivalent

to the original program, that is, for any test input t ,Out (τ(P,v0 ) ) ≡ Out (τ(M,v0 ) ). All non-equivalent
mutants, however, should be discriminated, i.e., killed, by at least one test input. Thus, there

must exist a test input t that satisfies the following three conditions (referred to as Reach, Infect,

, Vol. 1, No. 1, Article . Publication date: September 2020.
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int func (int x) {
1.    int n = 0, arr[] = {0,5,0};
2.    if (x >= 0) {
3.        if (x > 3)
4.            x = 3;
5.        while (x > 0) {
6.            if (arr[x-1] == 0) 
7.                n++;
8.            --x; // M1 (x -= 2;)

}
} else {

9.        n = x; // M2 (n = x+1;)
}

10.   if (n) 
11.       n++; 
12.   return n;
}

1 2

34

5

6

7

8

9

10

11

12

n=0 x<0

x>=0

n=x

n==0

n!=0

n++

return n

x<=0

x>3

x<=3

x=3

x>0
--x

n++

arr[x-1]!=0

arr[x-1]==0

(M2:n=x+1)

(M1:x-=2)

t1 (x = 2) t2 (x = -1)

Orig. M1 Orig. M2
1 1 1 1

2 2 2 2

3 3 9 9

5 5 10 10

6 6 11 12

8 8 12

5 5

6 10

7 12

8

5

10

11

12

arr=...

2 0 0 0Out

Fig. 1. Example. The rounded control locations represent conditionals (at least 2 possible transition from
them).

Propagate RIP [3, 10, 21]): the execution ofM with t must (i) Reach a mutated transition, (ii) Infect

(cause a difference in) the internal program state, i.e., change the variable valuations or the reached

control locations, (iii) Propagate this difference up to the program outputs. In the remainder of

the paper we state that a test reaches a mutant if the test satisfies condition (i), a test performs

a mutant infection if it satisfies condition (ii) and a test causes mutant propagation if it satisfies

condition (iii). One can encode those conditions as the symbolic formula: kill (P ,M ) ≜ ∃πP ,πM :

ϕ (πP ) ∧ ϕ (πM ) ∧ (Out (πP ) . Out (πM )). Any valuation satisfying this formula forms a test input

killing M . For given πP and πM , kill (πP ,πM ) ≜ ϕ (πP ) ∧ ϕ (πM ) ∧ (Out (πP ) . Out (πM )) denotes
the formula encoding the test inputs that killM and go through πP and πM in P andM , respectively.

Definition 2.3. Let P be an original program andM1, . . . ,Mn be a set of mutants of P . Then the

mutant killing problem is the problem of finding, for each mutantMi :

(1) two paths πP and πMi such that kill (πP ,πMi ) is satisfiable;
(2) a test input t satisfying kill (πP ,πMi ).

2.3 Example
Figure 1 shows a simple C program. The corresponding C code and transition system are shown

in the left and middle of Figure 1, respectively. The transition system does not show the guarded

commands for readability. The right side of Figure 1 shows two test inputs and their corresponding

traces (as sequences of control locations of the transition system). The transition system contains

12 control locations, corresponding to the 12 numbered lines in the program. The squared nodes

of the transition system represent the non-branching control locations and the circular nodes

represent the branching control location. For simplicity, we assume that each line is atomic. The

initial condition eval0 is x ∈ Int where Int is the set of all integers. Two mutants M1 and M2 are

generated by mutating statements 8 and 9, respectively.M1 results from changing the statement

“ − −x” into “x− = 2” and M2 results from changing the statement “n = x” into “n = x + 1”. The
mutants M1 and M2 result from the mutation of the guarded command of the transitions 8 → 5

and 9→ 10, respectively.

The test execution of t1 reachesM1 but notM2, while t2 reachesM2 but notM1. Test t1 infects
M1 and t2 infectsM2. The test execution of t1 on the original program and mutantM1 return 2 and

0, respectively. The mutantM1 is killed by t1 because 2 , 0. Similarly, the test execution of t2 on
the original program and mutantM2 return 0 and 0, respectively. Test t2 does not kill mutantM2.
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2.4 Symbolic Execution
One can apply symbolic execution to explore the different paths, using a symbolic representation of

the input domain (as opposed to concrete values) and building progressively the path conditions of

the explored paths. The symbolic execution starts by setting an initial path condition to ϕ = True .
At each location, it evaluates (by calling a dedicated solver) the guarded command of any outgoing

transition. If the conjunction of the guard condition and ϕ is satisfiable then there exists at least one

concrete execution that can go through the current path and the considered transition. In this case,

the symbolic execution reaches the target location and ϕ is updated by injecting into it the guarded

command of the transition. This procedure enables the symbolic execution to discard infeasible

paths (when the conjunction of the guard command and ϕ is unsatisfiable) without exploring them,

thus, removing their negative impact on the symbolic exploration. When multiple transitions are

available, the symbolic execution successively chooses one and pursues the exploration, e.g., in a

breadth-first manner.

As the symbolic execution progresses, it explores additional paths. The explored paths can

together be concisely represented as a tree [16] where each node is an execution state ⟨ϕ,σ ⟩ made

of its path condition ϕ and symbolic program state σ (itself constituted by the current control

location – program counter value – and the current symbolic valuation of variables). The path

condition ϕ is dynamically constructed through the dynamic execution, i.e., by using the symbolic

inputs and states on every program predicate.

Still, the tree remains too large to be explored exhaustively. Thus, one typically guides the

symbolic execution to restrict the paths to explore, effectively cutting branches of the tree. Precondi-

tioned symbolic execution attempts to reduce the path exploration space by setting the initial path

condition (at the beginning of the symbolic execution) to a specific condition. This precondition

restricts the symbolic execution to the subset of paths that are feasible given the precondition. The

idea is to derive the preconditions from pre-existing tests (aka seeds in the KLEE platform) that

reach the particular points of interests. This allows us to provide vital guidance towards reaching

the areas that should be explored symbolically, while drastically reducing the search space. In the

rest of the paper, we refer to a preconditioned symbolic execution that explores the paths followed by
some concrete executions as “seeded symbolic execution”.

Overall, one could make the following steps to generate test inputs for a program P via symbolic

execution:

(1) Precondition: specify a logical formula over the program inputs (computed as the disjunction

of the path conditions of the paths followed by the executions of the seeds) to prune out the

paths that are irrelevant to the analysis.

(2) Path exploration: explore a subset of the paths of P , effectively discarding infeasible paths.

(3) Test input generation: for each feasible path πP , solve ϕ (πP ) to generate a test input t that
executes τ(P,t ) following πP .

3 KILLING MUTANTS
3.1 Exhaustive Exploration
A direct way to generate test inputs killing some given mutants (of program P ) is to apply symbolic

execution on both P and the mutants, thereby obtaining their respective set of (symbolic) paths.

Then, we can solve kill (πP ,πMi ) to generate a test input that kills mutantMi and goes through πP
in P and through πMi inMi .

Figure 2 illustrates the use of symbolic execution to kill mutantM2 of Figure 1. The Subfigure 2

(a) represents the symbolic execution of the original program, and the Subfigure 2 (b) represents

the symbolic execution of the mutantM2. We skip the symbolic execution subtree rooted at control

, Vol. 1, No. 1, Article . Publication date: September 2020.
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int func (int x) {
1.    int n = 0, arr[] = {0,5,0};
2.    if (x >= 0) {
3~8.      ...

} else {
9.        n = x;

}
10.   if (n) 
11.       n++; 
12.   return n;
}

Original Program

Ø: True;   σ ↦ {n: 0}
Ø: True;   σ ↦ {n: 0}

Ø: x < 0;   σ ↦ {n: 0}

Ø: x ≥ 0;   σ ↦ {n: 0}

Ø: x < 0;   σ ↦ {n: x}
Ø: x < 0;   σ ↦ {n: x}

Ø: x < 0;   σ ↦ {n: x+1} Ø: False;   σ ↦ {n: x}

…

(𝜋𝜋𝑃𝑃
1) (𝜋𝜋𝑃𝑃

2)

Output: x+1 x

Path Condition: Ø
Program State : σ

(a) Symbolic execution on the original program of Figure 1 (relevant portion).

int func (int x) {
1.    int n = 0, arr[] = {0,5,0};
2.    if (x >= 0) {
3~8.      ...

} else {
9.        n = x+1;

}
10.   if (n) 
11.       n++; 
12.   return n;
}

Mutant M2

Ø: True;  σ ↦ {n: 0}
Ø: True;   σ ↦ {n: 0}

Ø: x < 0;   σ ↦ {n: 0}

Ø: x ≥ 0;   σ ↦ {n: 0}

Ø: x < -1;   σ ↦ {n: x+1}
Ø: x < -1;   σ ↦ {n: x+1}

Ø: x < -1;   σ ↦ {n: x+2} Ø: x = -1;   σ ↦ {n: x+1}

…

(𝜋𝜋𝑀𝑀2
1 ) (𝜋𝜋𝑀𝑀2

2 )

Output: x+2 x+1

Path Condition: Ø
Program State : σ

(b) Symbolic execution on the mutantM2 of Figure 1 (relevant portion).

Fig. 2. Example program ilustrating the symbolic execution to generate test to kill a mutant. The Subfigure
(a) and (b) represent the original program and a mutant, respectively.

location 3 since the corresponding paths do not reach mutantM2 and can easily be pruned using

static analysis. Also, we do not represent the symbolic variables arr and x , which are not updated

in this example. The symbolic execution on the original program leads to the paths π 1

P and π 2

P such

that ϕ (π 1

P ) ≡ (x < 0), ϕ (π 2

P ) ≡ False ,Out (π 1

P ) ≡ x +1 andOut (π 2

P ) ≡ x . The symbolic execution on

the mutantM2 leads to the paths π
1

M2

and π 2

M2

such that ϕ (π 1

M2

) ≡ (x < −1) and ϕ (π 2

M2

) ≡ (x = −1),

and Out (π 1

M2

) ≡ (x + 2) and Out (π 2

M2

) ≡ (x + 1). For easier visualization, Figure 3 illustrates a

side-by-side view of the symbolic executions represented in Figure 2.

The test generation that targets mutantM2 solves the following formulae:

(1) kill (π 1

P ,π
1

M2

) ≡ ((x < 0) ∧ (x < −1) ∧ (x + 1 , x + 2)). Satisfiable: example solution is x = −2.

(2) kill (π 1

P ,π
2

M2

) ≡ ((x < 0) ∧ (x = −1) ∧ (x + 1 , x + 1)). Unsatisfiable: no possible output

difference.

(3) kill (π 2

P ,π
1

M2

) ≡ (False ) ∧ (x < −1) ∧ (x , x + 2)). Unsatisfiable: infeasible path (π 2

P ).

(4) kill (π 2

P ,π
2

M2

) ≡ (False ) ∧ (x = −1) ∧ (x , x + 1)). Unsatisfiable: infeasible path (π 2

P ).

This method effectively generates tests to kill mutants. However, it requires a complete symbolic

execution on P and on each mutantMi . This implies that (i) all the path conditions and symbolic

outputs have to be stored and analysed, and (ii) kill (πP ,πMi ) has to be solved possibly for each pair

of paths (πP ,πMi ). This leads to large computational cost that makes the approach impractical.
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1 2 9

1011

12

3

…

10

M2

Ø: x<0
σ ↦{n:x}

12

Path Condition: Ø
Program State :σ

Ø: x<0
σ ↦{n:x+1}

Ø: x<0
σ ↦{n:x}

Ø: False
σ ↦{n:x}

Ø: x<0
σ ↦{n:x+1}

11

12 12

Ø: x<-1
σ ↦{n:x+1}

Ø: x=-1
σ ↦{n:x+1}

Ø: x<-1
σ ↦{n:x+2}

n=x+1n=x

Ø: x<0
σ ↦ {n:0}

x+1 x x+1x+2

(𝜋𝜋𝑃𝑃
1) (𝜋𝜋𝑃𝑃

2) (𝜋𝜋𝑀𝑀2
1 ) (𝜋𝜋𝑀𝑀2

2 )

Output:

𝑘𝑘 = 0

𝑘𝑘 = 1

𝑘𝑘 = 2

𝑘𝑘 = 3

𝑘𝑘 = 4

𝑘𝑘 = 5

Fig. 3. Example of Symbolic execution for mutant test generation. After control location 9, the symbolic
execution on the original program contains transition 9→ 10 with n = x while the symbolic execution of the
mutantM2 contains transition 9→ 10 with n = x + 1.

3.2 Conservative Pruning of the Search Space
To reduce the computational demands induced by the exhaustive exploration, we apply two

safe optimizations (preserve all opportunities to kill the mutants) that avoids exploring program

paths that are not promising. We take advantage of the fact that mutants, which are results of

simple syntactic alterations, share a large portion of their code with the original program. This is

recommended by other studies [22] in the context of specification-based testing, creating mutants

from specifications or system models. Though, here we aim at source code, which involves a lower

level representation and execution.

3.2.1 Meta-mutation. Our first optimization stems from the observation that all paths and path

prefixes of the original program P that do not include a mutated statement, i.e., location whose

outgoing transitions have changed in the mutants, also belong to the mutants. Thus, the symbolic

execution of P and that of the mutants may explore a significant number of identical path prefixes.

As seen in Figure 3, the symbolic execution is identical for the original and mutantM2 up to control

location 9. Instead of making two separate symbolic executions, SEMu performs a shared symbolic

execution based on a meta-mutant program. A meta-mutant [28, 29, 40] represents all mutants in a

single code. A branching statement (named mutant choice statement) is inserted at each mutation

point and controls, based on the value of a special global variable (the mutant ID), the execution of

the original and mutant programs.

The symbolic execution on the meta-mutant program initialises the mutant ID to an unknown

value and explores a path normally until it encounters a mutant choice statement. Then, the path

is duplicated once for the original program and once for each mutant, with the mutant ID set to

the corresponding value, and each duplicated path is further explored normally. While the effect

of this optimization is limited to the prefixes common to the program and all mutants, it reduces

the overall cost of exploration at insignificant computation costs and without compromising the

results.

3.2.2 Discarding non-infected mutant paths. In practice, many execution paths reach a mutant

(cover the mutation point) but fail to infect the program state (introducing an erroneous program

state). Extending the execution along such paths is a waste of effort as the mutant will not be killed

along those paths. Thus, SEMu terminates anticipatively the exploration of any path that reaches
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the mutant but fails to infect the program state. This procedure automatically stops the exploration

of mutant paths for equivalent mutants that cannot infect program states. Regarding equivalent

mutants that can infect the program state but never propagate the infection to the output, this

procedure cannot discard them.

3.3 Heuristic Search
Even with the aforementioned optimizations, the exhaustive exploration procedure remains too

costly due to two factors: the size of the tree to explore and the number of couples of paths πP and

πMi to consider. To speed up the analysis, one can further prune the search space, at the risk of

generating useless test inputs (that kill no mutant) or missing opportunities to kill mutants (by

ignoring relevant paths).

A first family of heuristics reduce the number of paths to explore by selecting and prioritizing

them, at the risk of discarding paths that would lead to killing mutants. A second family stop

exploring a path after k transitions and solve, instead of kill (πP ,πMi ), the formula

partialKill (πP [..k],πMi [..k]) ≜ ϕ (πP [..k]) ∧ ϕ (πMi [..k]) ∧ (σ (πP [..k]) . σ (πMi [..k]))

where, for any path π , π [..k] denotes the prefix of π of length k and where σ (π [..k]) is the
symbolic state reached after executing π [..k]. It holds that kill (πP ,πMi )⇒∃k : partialKill (πP [..k],
πMi [..k]), since a mutation cannot propagate to the output of the program if it does not infect the

program in the first place. The converse does not hold, though: statements after a mutation can

cancel the effects of an infection, rendering the output unchanged at the end of the execution. The

problem then boils down to selecting an appropriate length k where to stop the exploration, so as

to maximize the chances of finding an infection that propagates up to the observable outputs.

Regarding equivalent mutants, any mutant that cannot infect the program state is discarded

during the conservative pruning of the search space (Section 3.2.2). Mutants that can infect the

program state, but without propagating the infection to the output, are treated like killable mutants.

Only note that, in this case, the appropriate length k represents the point where the effects of all

potential infections are canceled.

As illustrated in Figure 3, generating a test at k = 3 (control location 10 and line number 10 in

Figures 2a and 2b), requires to solve the constraintpartialKill (π 1

P [..3],π
1

M2

[..3]) ≡ (x < 0∧x , x+1).
The constraint solver may return x = −1 which does not propagate the infection to the output.

However, generating a test at k = 5 (control location 12 and line 12 in Figures 1a and 2b), using the

original path π 1

P andmutant path π 1

M2

, requires to solve the constraint x < 0∧x < −1∧ (x+1 , x+2).
Any value returned by the constraint solver kills the mutant.

An ideal method to kill a mutantM would explore only one path πP and one path πM , and up to

the smallest prefix length k where the constraint solver can generate a test that killsM . However,

identifying the right πM and the optimal k is hard, as it requires precisely capturing the program

semantics. To overcome this difficulty, SEMu defines heuristics to prune non-promising paths on

the fly and to control at what point (what prefix length k) to call the constraint solver. Once path

prefix candidates are identified, SEMu invokes the solver to solve partialKill (πP [..k],πM [..k]).

3.4 Infection-only Strategy
The infection-only strategy generates tests by aiming at mutant infection (without any exploration

for propagation). To generate test inputs infecting some given mutants (of program P ), the infection-
only strategy applies symbolic execution on both P and the mutants, thereby obtaining their

respective set of (symbolic) paths. Then, for each mutantMi (linked with mutated statement sMi ), it

solves the infection condition partialKill (πP [..kP ],πMi [..kMi ]) to generate a test input that infects
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Fig. 4. Illustration of SEMu cost-control parameters. Subfigure (a) illustrates the Precondition Length where
the green subtree represents the candidate paths constrained by the precondition (the thick green path prefix
is explored using seeded symbolic execution). Subfigure (b) illustrates the Checkpoint Window (here CW is
2). Subfigure (c) illustrates the Propagation Proportion (here PP is 0.5) and the Minimum Propagation Depth
(here if MPD is 1 the first test is generated, for unterminated paths, from Checkpoint 1).

mutantMi and goes through πP in P and through πMi inMi . Here kP is the first occurrence of sMi

in πP and kMi is the first occurrence of sMi in πMi .

As illustrated in Figure 3, generating a test using the infection-only strategy, requires to solve

the constraint partialKill (π 1

P [..3],π
1

M2

[..3]) ≡ (x < 0 ∧ x , x + 1). While such an approach can be

effective [28], it has limitations as the constraint solver does not consider failed propagation. For

instance, in this case, the constraint solver may return x = −1 which infect the mutantM2 but does

not propagate this infection to the output.

4 SEMU COST-CONTROL HEURISTICS
SEMu consists of parametric heuristics to control the symbolic exploration of promising code

regions. Any configuration of SEMu sets the parameters of the heuristics, which together define

which paths to explore and the test generation process. SEMu also takes as inputs the original

program, the mutants to kill and a set of pre-existing test inputs to drive the seeded symbolic

execution. During the symbolic exploration, SEMu selects which paths to explore and when to stop

the exploration to generate test inputs based on the obtained path prefix.

4.1 Pre Mutation Point: Controlling for Reachability
To improve the efficiency of the path exploration, it is important to quickly prune paths that are

infeasible (cannot be executed) or irrelevant (cannot reach the mutants, i.e., the execution of the

paths does not result in executing the mutated statements). To achieve this, we leverage seeded

symbolic execution (as implemented in KLEE) where the seeds are pre-existing tests. We distinguish

between seeds and tests in order to denote the starting points of the symbolic exploration (the paths

from which we deviate) and the tests that are included in the test suites, respectively. We proceed

in two steps. First, we explore the paths in seeded mode up to a given length (precondition length).

Then, we stop following the seeds’ executions and switch to a non-seeded symbolic execution. The

location of the switching point thus determines where the exploration stops using the precondition.

In particular, if it is set to the entry point of the program then the execution is equivalent to a full

non-seeded symbolic execution. If it is set beyond the output then it is equivalent to a fully seeded

symbolic execution. Formally, let Π denote the complete set of paths of a program P , {t1, . . . , tn } be
the set of seeds, and l be the chosen precondition length. Then the sets of explored paths resulting
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from the seeded symbolic execution of length l and with seeds {t1, . . . , tn } is the largest set Π
′ ⊆ Π

satisfying π ∈ Π′ ⇒ ∃ti : ti |= ϕ (π [..l]).
This heuristics is illustrated in Figure 4a where the thick (green) segments represent the portion

of the tree explored by seeded symbolic execution and the subtree below (light green) represents

the portion explored by non-seeded symbolic execution. The precondition leads to pruning the

leftmost subtree.

Accordingly, the first parameter of SEMu controls the precondition length (PL) at which to stop

the seeded symbolic execution. Instead of demanding a specific length l , the parameter can take

two values reflecting two strategies to define l dynamically: GMD2MS (Global Minimum Distance

to Mutated Statement) and SMD2MS (Specific Minimum Distance to Mutated Statement). When set

to GMD2MS, the precondition length is defined, for all explored paths, as the length of the smallest

path prefix that reaches a mutated statement. When set to SMD2MS, the precondition length is

defined, individually for each path π , as the length l of the smallest prefix π [..l] of this path that

reaches a mutated statement.

4.2 Post Mutation Point: Controlling for Propagation
From the mutation point, all paths of the original program are explored. When it comes to a mutant,

however, it happens that path prefixes that cover the mutation point and infect the program state

fail to propagate the infection to the outputs. These prefixes should be discarded to reduce the

search space. Accordingly, our next set of parameters control where to check that the propagation

goes on, the number of paths to continue exploring from those checkpoints, and when to stop the

exploration and generate test inputs. Overall, those parameters contribute to reducing the number

of paths explored by the symbolic execution as well as the length k of the path prefixes from which

tests are generated.

It is worth noting that the risk to discard killing paths depends on the set value of each parameter,

as well as the program under analysis and the mutant considered. For instance, lets assume that, for

a given program and mutant, the killing paths are evenly distributed. By randomly discarding 50%

of the paths in order to reduce the search space, roughly 50% of the killing paths will be discarded

(note that only one killing path is needed to generate test to kill a mutant).

4.2.1 Checkpoint Location. The first parameter is an integer named the Checkpoint Window (CW)

which determines the location of the checkpoints. Any checkpoint is a program location with

branching statements, i.e., transitions with guarded command [д]f such that д , True , that is
found after the mutation point. Then, the checkpoint window defines the number of branching

statements (that are not checkpoints) between the mutation point and the first checkpoint, and

between any two consecutive checkpoints. The effect of this parameter is illustrated in Figure 4b.

The marked horizontal lines represent the checkpoints. In this case, the checkpoint window is set to

2, meaning that there are two branching statements between two checkpoints. At each checkpoint,

SEMu can perform two actions: (1) discard some branches (path suffixes) of the current path prefix,

by ignoring some of the branches, and (2) generate tests based on the current prefix. Whether and

how those two actions are performed is determined according to the following parameters.

4.2.2 Path Selection. The parameter Propagating Proportion (PP) specifies the percentage of the

branches that are kept to pursue the exploration, whereas the parameter Propagation Selection
Strategy (PSS) determines the strategy used to select these branches. We implemented two strategies:

random (RND) and Minimum Distance to Output (MDO). The first one simply selects the branches

randomly with a uniform probability. The second one assigns a higher priority to the branches that

can lead to the program output more rapidly, i.e., by executing fewer statements. This distance is

estimated statically based on the control flow and call graphs of the program. More specifically, for
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each target branch, we compute the minimum distance, on the program control flow graph, from

the target branch to all output system calls statements (printf, puts, ... function calls). The branches

with smaller distances are selected by the MDO strategy. Note that the minimum distances are

(pre-)computed once and cached, at the start of the execution, through a reverse breadth first search

that starts from all output system call statements, and sets the minimum distances of each visited

branch to its depth level. This pre-computation has similar complexity with a breadth-first search

traversal, thus, does not incur a significant overhead on SEMu. The two parameters are illustrated

in Figure 4c, where the crossed subtrees represent branches pruned at Checkpoint 0.

4.2.3 Early Test Generation. Generating test inputs before the end of the symbolic execution (on

the path prefixes) allows us to reduce its computation cost. Being placed after the mutation point,

all checkpoints are potential places where to trigger the test generation. However, generating

sooner, on the one hand, reduces the chances of seeing the infection propagate to the program

output, in the case of a killable mutant. On the other hand, it also increases the chances to generate

a (spurious) test, based on an infection that cannot propagate to the output, in the case of an

equivalent mutant. To alleviate this risk, we introduce the parameter Minimum Propagation Depth
(MDP), which specifies the number of checkpoints that the execution must pass through before

starting to generate tests. In Figure 4c, if MDP is set to 1 then tests are generated from Checkpoint

1 (for the two remaining paths prefixes). Note that in case MDP is set to 0, tests are generated for

the crossed (pruned) path prefixes at Checkpoint 0.

4.3 Controlling the Cost of Constraint Solving
Remember that partialKill requires the state of the original program and the mutant to be different.

The subformulae representing the symbolic program states can be large and/or complex, which

may hinder the performance of the invoked constraint solver. To reduce this cost, we devise

a parameter No State Difference (NSD) that determines whether to consider the program state

differences when generating tests. When set to True , partialKill (πP [..k],πM [..k]) is reduced to

ϕ (πP [..k]) ∧ ϕ (πM [..k]); however, its solution has lower chances of killing mutantM .

4.4 Controlling the Number of Attempts
It is usually sufficient to generate a single test that reaches the mutant to kill it. However, the

stubborn mutants that we target may not be killed by the early attempts (applied closer to the

mutation point) and require deeper analysis. Furthermore, a test generated to kill a mutant may

collaterally kill another mutant. For those reasons, generating more than one test for a given mutant

can be beneficial. Doing this, however, comes at higher test generation and test execution costs. To

control this, we devise a parameter Number of Tests Per Mutant (NTPM) that specifies the number

of tests generated for each mutant, i.e., the number of partialKill formulas solved for each mutant.

5 EMPIRICAL EVALUATION
5.1 ResearchQuestions
We first empirically evaluate the ability of SEMu to kill stubborn mutants. This is an essential

question, since there is no point in evaluating SEMu if it cannot kill some of the targeted mutants.

RQ1 What is the ability of SEMu to kill stubborn mutants?

By answering this question we find a strong killing ability of SEMu. We, therefore, turn our

attention to the question of whether the killing ability is due to the extended symbolic exploration

that is anyway performed by KLEE. We thus, compare SEMu with KLEE by running KLEE in the
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seed mode (using the initial test suite as a seed for KLEE test generation) to generate additional

tests. Such a comparison is also a first natural baseline to compare with. These motivate RQ2:

RQ2 How does SEMu compare with KLEE in terms of killed stubborn mutants?

Perhaps not surprisingly, we found that SEMu outperforms KLEE. This provides evidence that

our dedicated mutation-based approach is indeed suitable for mutation-based test generation. At

the same time though, our results raises further questions on whether the superior killing ability of

SEMu is due to its ability for mutant infection (suggested by previous research) or due to its ability

for mutant propagation (specific target of SEMu). In case we find that mutant infection is sufficient

for killing stubborn mutants then mutant propagation should be skipped in order to save effort and

resources. To investigate this, we ask:

RQ3 How does SEMu compare with the infection-only strategy in terms of killed stubbornmutants?

The infection-only strategy generates tests by aiming at mutant infection only (without any

exploration for propagation). When the symbolic execution path exploration reaches a mutated

statement having a mutation corresponding to mutantM , a test is generated by solving the mutant

infection condition forM .

5.2 Test Subjects
To answer our research questions, we experimented with the C programs of GNU Coreutils

3

(version 8.22). GNU Coreutils is a collection of text, file, and shell utility programs widely used in

unix systems. The whole codebase of Coreutils is made of more than 60,000 lines of C code
4
.

The repository of Coreutils contains developer tests for the utilities programs which are system

tests written in shell or perl scripts that involve more than 20,000 lines of code
4
.

Applying mutation analysis on all Coreutils programs requires excessive amount of effort. There-

fore, we randomly sampled 60 programs, based on which we performed our analysis. Unfortunately,

in 13 of them mutation analysis took excessive computational time (due to costly test execution),

for which we terminated the analysis. Therefore, we analysed 47 programs. These are: base64,

basename, chcon, chgrp, chmod, chown, chroot, cksum, date, df, dirname, echo, expr,

factor, false, groups, join, link, logname, ls, md5sum, mkdir, mkfifo, mknod, mktemp,

nproc, numfmt, pathchk, printf, pwd, realpath, rmdir, sha256sum, sha512sum, sleep, stdbuf,

sum, sync, tee, touch, truncate, tty, uname, uptime, users, wc, whoami. The following Figure

presents the size of these subjects.

4000 6000 8000 10000 12000 14000
# Lines of Code

For each subject we selected the 3 functions that were covered by the largest number of developer

tests (from the initial test suite).

5.3 Employed Tools
We implemented our approach on top of LLVM

5
using the symbolic virtual machine KLEE [7].

The version of our tool is based on the KLEE revision 74c6155, LLVM 3.4.2. Our implementation

modified (or added) more than 8,000 lines of code on KLEE, and is publicly available
6
. We are

3
https://www.gnu.org/software/coreutils/

4
Measured with cloc (http://cloc.sourceforge.net/)

5
https://llvm.org/

6
https://github.com/thierry-tct/KLEE-SEMu
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planning to add support for newer versions of LLVM. To convert system tests into the format of

seeds required by KLEE for the seeded symbolic execution, we use Shadow [24].

Our tool requires the targeted mutants to be represented in a meta-mutant program (presented

in Section 3.2.1), which were produced using the Mart [38] mutant generation tool. Mart mutates

a program by applying a set of mutation operators (code transformations) to the original LLVM

bitcode program. An example of the mutation operator is to change the addition operation "+" into

the substraction operation "-".

The mutants produced by the version of Mart used in this experiment are first-order mutants.

However, our approach also support higher-order mutants. In the case of higher-order mutants, the

meta-mutant program fed to SEMu is required to use the same mutant identifier for all sub-mutants

of the higher-order mutant. When, applying SEMu on higher-order mutants, equivalent mutants

can be detected and discarded by using existing higher-order equivalent mutant detection tools

[13].

5.4 Experimental Setup
5.4.1 Selected Mutants. To perform our experiment we need to form our target mutant set. To

do so, we employed Mart by using its default configuration and generated 172,919 mutants. This

configuration generates a comprehensive set of mutants based on a large set of mutation operators,

consisting of 816 code transformations. It is noted that the operator set includes the classical 5

operators [23] that are used by most of the todays’ studies and mutation testing tools. The interested

reader is referred to Mart’s paper for further details [38].
To identify the stubborn mutant set we started by eliminating trivial equivalent and duplicated

mutants, and form our initial mutant setM1. To do so, we applied Trivial Compiler Equivalence

(TCE) [26], a technique that statically removes a large number of mutant equivalences. In our

experiment, TCE removed a total number of 102,612 mutants as being equivalent or duplicated.

This gave us 70,307 mutants to be used for our initial mutant set, i.e.,M1=70,307.

Then, we constructed our initial test suites TS (composed of the developer test suite and auto-

matically generated tests by a simple test generation run of KLEE). To generate these tests with

KLEE, we set a test generation timeout of 24 hours, while using the same configurations presented

by the authors of KLEE [7] (except for larger memory limit and max-instruction-time, set to
9GB and 30s respectively). This run resulted in 5,161 tests (2,693 developer tests and 2,468 tests

generated by the initial run of KLEE).

We then executed the initial test suites (TS) with the initial mutant set (M1) and identified the

live and killed mutants. The killed mutants were discarded, while the live ones formed our target

mutant set (denoted it asM2), i.e.,M2 is the target of SEMu. In our experiment we found thatM2

included 26,278 mutants, which is approximately 37% of M1. It is noted that M2 is a superset of

the stubborn mutants as it includes both stubborn and equivalent mutants. Unfortunately, judging

mutant equivalence is undecidable and thus, we cannot remove such mutants before test generation.

Therefore, to preserve realistic settings we are forced to run SEMu on allM2 mutants.

To evaluate SEMu effectiveness we need to measure the extent to which it can kill stubborn

mutants. Unfortunately, M2 contains a large proportion of equivalent mutants [35], which may

result in significant underestimations of test effectiveness [18]. Additionally,M2 may contain a large

portion of subsumed mutants (mutants killed collaterally by tests designed to kill other mutants),

which may inflate (overestimate) test effectiveness [25]. Although we discarded easy-to-kill mutants

(mutants ofM1 that are killed byTS), it is still likely that a significant amount of ‘noise’ still remains.

To reduce such biases (both under and over estimations) [18, 25], there is a need to filter out

the subsumed mutants by forming the subsuming mutant set [17, 27]. The subsuming mutants

are mainly distinct (in the sense that killing one of them does not alter, increase or decrease, the
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chances of killing the others) providing objective estimations of test effectiveness. Unfortunately,

identifying subsuming mutants is undecidable and thus, several testers, e.g., Ammann et al. [2],

Papadakis et al. [25], Kurtz et al. [18] suggested approximating them through strong test suites.

Therefore, to approximate them, we used the combined test suite that merges all tests generated

by KLEE and SEMu across the execution of its 128 different configurations,

n⋃
i=0

TSxi , where x0 is

KLEE and xi (0 < i ≤ n) are the n SEMu configurations (refer to Section 5.4.2 for details). This

process was applied onM2 and resulted in a set of 529 mutants, forming the mutant setM3. In the

rest of the paper we call the mutants belonging to M3 as reference mutants. We use M3 for our

effectiveness evaluation.

Overall, through our experiments we used two distinct mutant sets, M2 and M3. To preserve

realistic settings, the former is used for test generation, while the later is used for test evaluation

(to reduce bias).

5.4.2 SEMu Configuration. To specify relevant values for our modelling parameters (SEMu pa-

rameters) we performed ad-hoc exploratory analysis on some small program functions. Based on

this analysis we specify 2 relevant values for each of the 7 parameters (defined in Section 4). These

values provided us the basis for constructing a set of configurations (parameter combinations) to

experiment with. In particular the values we used are the following: Precondition Length: GMD2MS
and SMD2MS, Checkpoint Window: 0 and 3, Propagating Proportion: 0 and 0.25, Propagating Selec-

tion Strategy: RND and MDO, Minimum Propagation Depth: 0 and 2, No State Difference: True and
False, Number of Tests Per Mutant: 1 and 5.

We then experiment with the constructed configurations in order to select the most prominent

SEMu configuration and form our approach. It is noted that different values and combinations form

different strategies. Examining them is a non-trivial task since the number of configurations is

exponentially increased, i.e., 2
7 = 128 and mutant execution takes considerable amount of time. In

our study, the total test generation by the various configurations of SEMu and KLEE took roughly

276 CPU days (number of days for a single CPU single thread execution), while the execution of

the mutants took approximately 1,400 CPU days.

To identify and select the most prominent configuration, we executed our framework on all test

subjects under all constructed configurations. We restrict the symbolic execution time to 2 hours.

We then randomly split the set of test subjects into 5 buckets of equal size (each one containing

20% of the test subjects). Then, we pick 4 buckets (80% of the test subjects) and select the best

configuration by computing the ratio of killed reference mutants. We assess the generalization

of this configuration on the left out bucket (5th bucket that includes 20% of the test subjects). To

reduce the influence of random effects, we repeated this process 5 times by leaving every bucket

out for evaluation. At the end we selected the median performing configuration (performance on

the bucket that had been left out). It is noted that such a cross validation process is commonly used

in order to select stable and potentially generalizable configurations.

Based on the above procedure we selected the SEMu configuration: PL = GMD2MS, CW =

0, PP = 0.25, PSS = RND, MPD = 2, NSD = False, NTPM = 5.

5.5 Experimental Settings and Procedure
To perform our experiment we set, on KLEE, the following (main) settings (which are similar to

the default parameters of KLEE): a) we set a memory usage threshold of 8 GB, (a threshold never

reached by any of the studied methods), b) we set the search strategy on Breadth-First Search (BFS),

which is commonly used in patch testing studies [24] and c) we set a 2 hours time limit for each

subject.
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It is noted that our current implementation supports only BFS. We believe that such a strategy fits

well with our purpose as it is important that the mutants and original program paths are explored

in a lock step in order to enable state comparison at the same depth. The time budget of 2 hours was

adopted because it is frequently used in test generation studies, e.g., [7]. It is noted that since SEMu
performs a deeper analysis than the other methods, adopting a higher time limit would probably

lead to an improved performance, compared to the other methods. Of course reducing this limit

could lead to reduced performance.

We then evaluated the effectiveness of the generated test suites by computing the ratio of

reference mutants that they kill. Unfortunately, in 11 among the 47 test subjects we considered,

none of the evaluated techniques managed to kill any mutant. This means that for these 11 subjects

we approximate having 0 stubborn mutants and thus, we discarded those programs. Therefore, the

following results regard the 36 programs for which we could kill at least one stubborn mutant.

To answer RQ1 we compute and report the ratio of the reference mutants killed, i.e.,M3 set, by

SEMu when it targets the 26,278 surviving mutants, i.e.,M2 set.

To answer RQs 2 and 3 we compute and contrast the ratio of the reference mutants killed by

KLEE (executed in "seeding" mode), the infection-only strategy (a strategy suggested by previous

research [15, 42]) and SEMu (for fair comparison, we used the initial test suite as seeds for the three

approaches). We also report and contrast the number of mutant-killing tests that were generated.

Since the generated tests may include large numbers of redundant tests, i.e., a test is redundant

with respect to a set of tests when it does not kill any unique mutant compared to the mutants

killed by the other tests in the set [27], we compare the sizes of non-redundant test sets, which we

call mutant-killing test sets. The size of these sets represents the raw number of end objectives that

were successfully met by the techniques [3, 27].

To compute the mutant-killing test sets we used a greedy heuristic. This heuristic incrementally

selects the tests that kill the maximum number of mutants that were not killed by the previously

selected tests.

5.6 Threats to Validity
All in all we targeted 133 functions from 47 programs from Coreutils. This level of evidence

sufficiently demonstrates the potential of our approach, but should not be considered as a general

assertion of its test effectiveness.

We generated tests at the system level (system tests), relying on the developers’ tests suites. We

believe that this is the major advantage of our approach because this way we focus on stubborn

mutants that encode system level corner cases that are hard to reveal. Another benefit of doing so

is that at this level we can reduce false alarms, experienced at unit level (feasible behaviors at unit

but infeasible at system level), [14]. Unfortunately though, this could mean that our results do not

necessarily extend to unit level.

Another issue may be due to the tools and frameworks we used. Potential defects and limitations

of these tools could influence our observations. To reduce this threat we used established tools, i.e.,

KLEE and Mart, that have been used by many empirical studies. To reduce this threat further we

also performed manual checks and made our tool publicly available.

In our evaluation we used the subsuming stubborn mutants in order to cater for any bias caused

by trivial mutants [25]. While this practice follows the recommendations made by the mutation

testing literature [27], the subsuming set of mutants is a subject to the combined reference test

suite, which might not be representative to the input domain. Nevertheless, any issue caused by

the above approximations could only reduce the mutant killed ratios and not the superiority of our

method. Additional (future) experimentations will increase the generalizability of our conclusions.
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Fig. 5. Comparing the stubborn mutant killing ability of SEMu, KLEE and the infection-only.

The comparison between the studied methods (infection-only) was based on a time limit that

did not include any actual mutant test execution time. This means that when reaching the time

limit, we cannot know how successful (at mutant killing) the generated tests were. Additionally, we

cannot perform test selection (eliminate ineffective tests) as this would require expensive mutant

executions. While, it is likely that a tester would like to execute the mutants in order to perform

test selection, leaving mutant execution out allows a fair comparison basis between the studied

methods since mutant execution varies between the methods and heavily depends on test execution

optimizations used [27]. Nevertheless, it is unlikely that including the mutant execution would

change our results since SEMu generates less tests than the baselines (because it makes a deeper

analysis than the baselines).

6 EMPIRICAL RESULTS
6.1 Killing ability of SEMu
To evaluate the effectiveness of SEMu we run it for 2 hours per subject program and collect the

generated test inputs. We then execute the reference mutants with these inputs and determine

the killed ones. Interestingly SEMu kills a large portion of the reference mutants. The median

percentage of killed mutants is 37.3%, indicating a strong killing ability. To kill these mutants SEMu
generated 153 mutant-killing test inputs (each test kills at least one mutant that is not killed by any

other test).

6.2 Comparing SEMu with KLEE
Figure 5 records the proportion of the killed reference mutants by SEMu, seeded mode of KLEE

and infection-only (investigated in RQ3). It is noted that the boxes include the proportions of

killed mutants among the different test subjects we use. The thick horizontal line on the boxplots

represents the median value of the proportion of killed mutants. It is computed from the proportion

of killed mutants of all test subjects. From these results we can observe that SEMu has a median

value of 37.3% while KLEE has a median value of 0.0%.

To further validate the difference we use the Wilcoxon statistical test (paired version) to check

whether the differences are significant. The statistical test gives a p-value of 0.006 suggesting

that the two samples’ values are indeed significantly different. As statistical significance does not

provide any information related to the volume of the difference, we also compute the Vargha
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Fig. 6. Comparing the mutant killing ability of SEMu and KLEE in per program basis.

Delaney effect size (Â12 value) that quantifies the frequency the observed difference. The results

give a Â12 of 0.736, which indicates that SEMu is superior to KLEE in 73.6% of the cases.

Figure 6 depicts the differences and overlap between the reference mutants killed by SEMu and

KLEE, per studied subject. From this figure, we can observe that the number of programs with

overlapping killed mutant is very small indicating that the two methods differ significantly. We

also observe that SEMu performs best in the majority of the cases. Interestingly, a non negligible

number of mutants are killed by KLEE only. These cases fall within a small number of test subjects.

We investigated these cases and found that the differences were big either because there was only

one reference mutant, which was killed by KLEE alone, or because of the large number of surviving

mutants that force SEMu to perform a shallow search. Unfortunately, SEMu spends much time

trying to kill every targeted mutant and thus, when a large number of them is involved, the 2 hours

time limit we set is not sufficient to effectively kill them.

In fact, given a configuration of SEMu, the time budget needed to target all the mutants is

proportional to the number of mutants. That is why, for a fixed time budget, the effectiveness of

SEMu may decrease as the number of mutants increases, leaving some mutants untargeted when

the time budget is exhausted. One way to mitigate this, when a large number of mutants is involved,

perhaps is to prune the paths more aggressively or reduce the number of attempts for these cases.

A future work will automatically set the appropriate parameters’ values based on the program

under analysis and the number of mutants, in a way that optimises the effectiveness of SEMu. This
will enable each mutant to have a share of the time budget.

To better demonstrate the effectiveness differences of the methods we also record the number of

the mutant killing test inputs (each test kills at least one mutant that is not killed by any other test).

We found that SEMu generated 153 mutant-killing test inputs, while KLEE generated only 62.

6.3 Comparing SEMu with infection-only
A first comparison between SEMu and infection-only can be made based on the data from Figure 5.

According to these data SEMu has a median value of 37.3% while infection-only has a median of

17.2%. Interestingly, this shows a big difference in favour of our approach. To further validate this
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Fig. 7. Comparing the mutant killing ability of SEMu and infection-only in per program basis.

finding, we performed a Wilcoxon statistical test and got a p-value of 0.04 suggesting that the two

samples’ values are statistically significant (at the commonly adopted 5% confidence level). Like

in RQ2 we also computed the Vargha Delaney effect size Â12 and found that SEMu yields higher

killing rates than infection-only in 61% of the cases.

To demonstrate the differences we also present our results in a per test subject basis. Figure 7

shows the differences and overlap between the killed reference mutants. From these results we

observe a large overlap between the mutants killed by both approaches, with SEMu being able

to kill more mutants for most of the cases. We also observe that in 5 of the cases infection-only
performed better than SEMu, while SEMu performed better in 13.

Similarly, to the previous RQs we compare the strategies by counting the number of the mutant

killing test inputs that were generated by the strategies. Interestingly, we found that SEMu generated
87% more mutant killing test inputs than the "infection-only" one (153 vs. 82 inputs) , indicating

the usefulness of our framework.

7 RELATEDWORK
Many techniques targeting mutation-based test generation have been proposed [4, 27]. However,

most of these focus on generating test suites from scratch, by maximizing the number of mutants

killed, mainly by either reaching the mutants or by targeting mutant infection. In contrast we

aim at the thorough testing of specific program areas by taking advantage of existing tests and by

targeting stubborn mutants that are hard to propagate.

The studies of Papadakis and Malevris [29, 30], and Zhang et al. [42] proposed embedding mutant

related constraints, called infection conditions, within meta-programs. These meta-programs inject

and control the mutations in order to force symbolic execution to cover them. As a result, symbolic

execution modules can produce test cases that satisfy the infection conditions and have good

chances to kill the mutants. Although effective, these approaches only target mutant infection,

which makes them relatively weak [39].
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To bypasss the abovementioned problem, the studies of Papadakis and Malevris [28] and Har-

man et al. [15] aimed at indirectly handling mutant propagation. The former technique searches

symbolically the path space of the mutant programs (after the mutation point), while the later one

searches the input program space defined by the path conditions in order to bypass constraints

not handled by the used solver and to indirectly make the mutants propagate. In contrast SEMu
aims at incrementally differentially exploring the path space by considering the symbolic states

and making a relevant exploration.

Fraser and Zeller [12] and Fraser and Arcuri [11] applied Search-based testing in order to generate

mutation-based tests. Their key advancement was to guide the search by measuring the differences

between the test traces of the original and mutant programs. While powerful, such an attempt still

fails to provide the guidance needed in order to trigger such differences.

Moreover, search techniques rely on the ability to execute test cases fast (applied at the unit

level), making them less effective in cases of slow test execution (such as system level testing).

Nevertheless, a comparison between search-based test generation and symbolic execution falls out

of the scope of the present paper.

Much work on testing software patches has also been performed the recent years [19, 20,

37]. However, most of these methods aim at covering patches and not the program semantics

(behavioural changes). Moreover, these techniques target the general patch testing problem, which

in a sense assume very few patches with many changes. The case of mutation, though, involves

many mutants. These are created by inducing small syntactic deviations, a fact that our method

takes advantage in order to optimize the mutant killings.

Differential symbolic execution [31] aims at reasoning about semantic differences of program

versions, but since it performs a whole program analysis it can experience significant scalability

issues when considering large programs and multiple mutants. Directed incremental symbolic

execution [32] guides the symbolic exploration through static program slicing. Unfortunately, such

a method can be expensive when used with many mutants. Nevertheless, program slicing could be

used to further guide SEMu towards the relevant mutant exploration space.

Shadow symbolic execution [24] applies a combined execution on both program versions under

analysis. It relies on analysis a meta-program that is similar to the mutant’s meta-program in order

to take advantage of the common program parts. The major difference with our method is that

we specifically target multiple mutants at the same time, limit the program exploration through

data state comparisons in order to optimize performance. Since shadow targets single patches and

exhaustively searches the path space (after the mutation point) it can experience scalability issues.

Overall, while many related techniques have been proposed, they have not been investigated in

the context of mutation testing and particularly to target stubborn mutants. Stubborn mutants are

hard to kill and their killing results in test inputs that are linked with corner cases and increase

fault revelation [39].

8 CONCLUSION
This paper introduced SEMu, a method that generates test inputs for killing stubborn mutants.

SEMu relies on a form of shared differential symbolic execution that incrementally searches a small

but ‘promising’ code region around the mutation point in order to reveal divergent behaviours.

This allows the fast and effective generation of test inputs that thoroughly exercise the targeted

program corner cases. We have empirically evaluated SEMu on Coreutils and demonstrated that it

can kill approximately 37% of the involved stubborn mutants within a two hour time budget. This

performance is approximately 20% higher than that of the baseline (infection-only) strategy.
An important characteristic of SEMu is that it allows performing thorough testing in selected

‘critical’ parts of the programs under test. Therefore, it allows improving test suites by generating
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mutation-based test inputs that kill stubborn mutants (mutants that survive the execution with

the available test suites). This is important as it allows testing corner cases that escaped testing

(encoded by stubborn mutants [39]). Moreover, SEMu aims at handling failed error propagation

(masking effects), which is challenging and prevalent in mutation testing.

Similarly to any technique that generates tests to kill mutants, the scalability of SEMu depends

on the nature and the number of the involved mutants. However, the design of SEMu enables

various configurations achieving different trade-offs when aiming at stubborn mutants. This makes

it possible to choose, based on the number of mutants and available time budget, the configuration

that evenly share the allocated time budget across all mutants.

Our future work includes the examination of additional path search strategies and a thorough

evaluation of the relationship between the propagation distance and the likelihood of revealing

underlying program defects. These will enable tuning further the test generation process and will

improve scalability and effectiveness.

SEMu is publicly available as open-source: https://github.com/thierry-tct/KLEE-SEMu.
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