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Similar to traditional software that is constantly under evolution, deep neural networks (DNNs) need to
evolve upon the rapid growth of test data for continuous enhancement, e.g., adapting to distribution shift
in a new environment for deployment. However, it is labor-intensive to manually label all the collected test
data. Test selection solves this problem by strategically choosing a small set to label. Via retraining with
the selected set, DNNs will achieve competitive accuracy. Unfortunately, existing selection metrics involve
three main limitations: 1) using different retraining processes; 2) ignoring data distribution shifts; 3) being
insufficiently evaluated. To fill this gap, we first conduct a systemically empirical study to reveal the impact of
the retraining process and data distribution on model enhancement. Then based on our findings, we propose
a novel distribution-aware test (DAT) selection metric. Experimental results reveal that retraining using both
the training and selected data outperforms using only the selected data. None of the selection metrics perform
the best under various data distributions. By contrast, DAT effectively alleviates the impact of distribution
shifts and outperforms the compared metrics by up to 5 times and 30.09% accuracy improvement for model
enhancement on simulated and in-the-wild distribution shift scenarios, respectively.
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1 INTRODUCTION

Deep Neural Networks (DNNs) are increasingly integrated into large software systems in various
applications, such as face recognition [39], autonomous vehicles [2], speech recognition [52], video
gaming [44], and so on. Despite the impressive success and great potential of DNNs, there are crucial
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accidents caused by quality issues of deep learning (DL) systems, e.g., Tesla/Uber accidents [45].
Therefore, similar to traditional software products, DNNs are required to undertake careful testings
to check whether they match the expected requirements for reliable deployment. In practice, DNNs
are mostly tested on a set of examples — the test set — that is extracted from the same dataset as the
training set. As a result, by default, the test set and training set follow the same data distribution.

However, in real-world applications, Deep Learning (DL) systems face an important hurdle: the
effectiveness (e.g. prediction accuracy) of the embedded DNN declines over time due to changes
in data distribution. These distribution shifts [49] originate from multiple causes, e.g., changes in
user behaviour, seasonal data patterns, benign alterations in the inputs, etc. In such cases, software
engineers have no choice but to manually re-engineer the DNN (i.e. design the architecture, set
the hyperparameters and train on the data anew). And these re-engineering activities require
considerable human and computational effort that is akin to the original production of the model.
Distribution shift, therefore, constitutes one of the most important obstacles to the widespread
dissemination of DL.

Similar to the general problem of software maintenance in conventional software engineering,
distribution shift concerns enhancing the capability of the ML model to deal with unseen inputs.
With the rapid growth of data that could follow a different data distribution, DL models may exhibit
amisleading sense of achieving high performance on the original test data while having unexpected
performance on the new data. Therefore, DL systems — in particular, the DNNs that are the essential
backbone of these systems — also need to be evolved upon having the massive amount of collected
new test data for continuous enhancement.

Fortunately, DL systems do not need to be re-engineered each time a distribution shift occurs
but can rather cope with such shifts through a development strategy that promotes incrementality.
Common strategies to combat drifts include retraining the DL model, that is, updating the DNN
weights through additional training epochs using the new data. The retraining process can be
entirely automated and, therefore, can avoid the heavy human and computational overhead of
complete re-engineering. (Re)training a DNN requires labels of the collected data to calculate the
loss information and guide the tuning of the model weights. However, data labeling is another
important practical overhead. The reason is that although collecting massive new data (usually raw
and unlabeled) is cheap and easy, labeling all of them is often manual, expensive, and prohibitively
time-consuming. For example, labeling the first version of the ImageNet dataset took groups of
people more than 3 years [5]. Particularly, the manual task of labeling can be more challenging in
specific applications, when domain-specific knowledge is required.

Test selection refers to the area of research concerned with selecting, from a large set of unlabelled
data, those data that are more likely to reveal errors in a given DNN [27]. Research has recently
developed selection metrics to address this problem [3, 8, 16, 24, 38] as well as reduce the labeling
effort. Once fault-revealing data have been found and labeled, the same data can be used to retrain
the model (removing the errors that these data represent) and, thereby, improve its generalization.
While these metrics have demonstrated their potential to test and improve DNNs, we observed
fundamental and experimental gaps that we aim to address in this paper:

(1) Utilization of two different retraining processes. The retraining process plays a key role in
the model enhancement, which leads the model to learn new information while keeping
the original knowledge. However, in existing studies, two different retraining processes are
used for model enhancement and the impact of each process is still unclear and not explored.
Taking three state-of-the-art metrics as an example, the Multiple-Boundary Clustering and
Prioritization (MCP) [38] and the surprise adequacy guided metric [16] retrain a DNN using
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only this subset. On the contrary, DeepGini [8] uses both the original training data and this
subset.

(2) Unaware of data distribution shift. The shift of data distribution refers to the phenomenon
that the distributions of training and test data are different, such as the images taken under
different brightness. Usually, the data following the same or a different distribution are re-
garded as in-distribution (ID) or out-of-distribution (OOD) data, respectively. The distribution
shift can be divided into two types, 1) synthetic distribution shift which comes from the
computer-generated perturbation; 2) natural distribution shift which comes from unseen and
unperturbed data. Data distribution has been proved to be critical in deep learning testing,
especially for practical deployment of DL models [1, 6]. However, this factor is not considered
in existing test selection metrics.

(3) Evaluated by narrow experimental setups. We observe that the effectiveness of existing
selection metrics for model retraining is insufficiently evaluated. For instance, MCP is only
evaluated on a combination of original test data (80%) and new data (20%), while DeepGini
only selects data from the new data (100%) and retrain the model accordingly. The other
combinations of data are uncovered and should be considered in the evaluation.

To elaborate on and address these limitations, in this paper, we conduct an empirical study to
evaluate existing selection metrics under various data distribution shifts and answer the following
three research questions:

RQ1: Which retraining process achieves better model enhancement?

RQ2: How effective are different test selection metrics under different data distributions for model
enhancement?

RQ3: Concerning data distribution and class bias, what are the characteristics of the data selected
by different metrics?

Overall, our empirical study evaluates 6 selection metrics over 5 datasets (including 3 image
datasets and 2 text datasets) and 2 DNN architectures for each dataset (including both feed-forward
neural networks (FNNs) and recurrent neural networks (RNNs)). In total, we retrained 71280 models.
By investigating the above research questions, we found that retraining using both the original
training data and selected data achieves better results for model enhancement. Moreover, we
observed that using this retraining process, existing selection metrics perform differently under
different data distributions. For example, when OOD data are more than 70% in the new set, random
selection performs surprisingly the best. Besides, we found that class bias is another potential
characteristic in addition to data distribution for data selection. Based on these findings, we further
propose a distribution-aware test (DAT) selection metric to alleviate the impact of distribution
shifts on model retraining. The key idea of DAT is to select uncertain and representative data
from the ID and OOD sets, respectively. In detail, we first utilize an OOD detector to split the
new data into the ID set and OOD set. Afterward, for the ID set, DAT selects the most uncertain
data which follow the same distribution as the training data but are not well learned by the model.
For the OOD set, DAT selects the most representative data, which means the selected data can
represent the whole set. To demonstrate the effectiveness of our metric, we conduct experiments to
answer the following two research questions. The experimental results show that DAT achieves
the best performance among all the existing metrics.

RQ4: Under synthetic distribution shifts, how effective is DAT for model enhancement?
RQ5: Under natural distribution shifts, how effective is DAT for model enhancement?

In summary, the main contributions of this paper are:
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o To the best of our knowledge, we are the first to conduct a systemically empirical study of
investigating how the retraining process and data distribution impact the test selection for
model enhancement.

e This is the first study that analyzes and explores the characteristics of data selected by
different metrics in terms of both data distribution and class bias.

e We propose the first distribution-aware test selection metric (DAT), which can reduce the
impact of data distribution on model enhancement. Besides, we release our implementation
and datasets for future use and research.!.

The rest of this paper is organized as follows. Section 2 introduces some background knowledge of
this work. Section 3 highlights the problem we target. Section 4 presents the design of our empirical
study. Section 5 details the results of our empirical study. Section 6 introduces and evaluate our
DAT metric. Section 7 discusses the main findings and limitations of this work. Section 8 presents
the related works and section 9 concludes this paper.

2 BACKGROUND

We briefly introduce the background related to this work, including DNN, deep learning testing,
and out-of-distribution detection.

2.1 Deep Neural Networks

A deep neural network (DNN) is a type of artificial neural network with one or multiple hidden
layers between the input and output layers. “Deep” in the name refers to the layers of the network
being multiple. Each layer includes a large number of neurons which forms the basis of a DNN.
The neurons in successive layers are connected with different weights that are tuned during the
training process by minimizing the error between the prediction and the ground-truth among a
certain number of epochs.

Generally, building a DNN model requires three sets of data, training set, validation set, and
testing set. The training set is used to feed the model and tune the parameters during the training
process. The validation set contributes to the training process to estimate how well a model has
been trained. In practice, it is used for avoiding overfitting or underfitting, determining a stopping
point for a possible best performance, finding the “optimal” number of hidden layers, and so on.
The test set represents the unseen data for the trained model, which is independent of the training
and validation sets. This set reveals how the model would behave when being applied to real-world
data.

2.2 Deep Learning Testing and Test Selection

Software testing tries to reveal bugs in the software systems [31]. Normally, conventional software
systems are designed and built by human logic. Testers could follow such logic to decide the test
oracle, choose the testing techniques, and write test cases to test the systems. However, since
DNNs are driven by training data and training processes, the logic inside the DNN models is
unclear (known as their black-box property). As a result, it is hard to define bugs and design testing
strategies for the DNNs. Recent works have proposed multiple techniques for DL testing [3, 7, 8,
16, 24, 26, 32, 38, 40, 43] which target different properties (e.g., fairness, adversarial robustness, and
correctness.) of a DNN model. For a review of machine learning testing, we refer to a survey in
[34].

Among massive testing approaches, test selection in DL is a technique that aims at solving two
common problems: 1) to select data that can be used to represent the whole set and estimate the

lhttps://github.Corn/code4papers/DAT
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performance of the model on this set; 2) to select the data which are more likely to be misclassified
by the model and then retrain an accurate model using the selected data. In this work, we focus on
the second problem — how to utilize test selection to enhance the pre-trained model? Given that
the data, in reality, are more complex than the data (which are carefully selected and organized)
used for training a model, a pre-trained model goes through a retraining process with new unseen
data to adapt to a specific application. In this paper, we focus on testing the accuracy of a DNN
model against new unseen data. That is, given a pre-trained model and a set of unseen data, we
retrain it by using a small subset of the unseen data to ensure high accuracy on both the original
test data and this unseen data. Due to the high labeling cost, only a small set of data are selected in
practice. Note that, in contrast to the existing work [38], when testing the retrained model, the
original test data besides the new unseen data are considered.

A related topic of test selection is active learning [30] in the machine learning (ML) community
in the sense of reducing labeling cost. In active learning, a DNN is obtained iteratively through
multiple steps. In each step, a set of data are selected to label and to update a pre-trained DNN
obtained by the previous step. However, active learning and test selection have the following
differences: 1) Initial state. Generally, active learning starts from an early-stage DNN, while test
selection already has a well-trained DNN. 2) Procedure. Active learning attains a DNN by multiple
steps and each step goes through a full training process. In test selection, the pre-trained DNN is
enhanced using the selected data by retraining within several epochs (usually fewer than a full
training process, such as only 5 or 10 epochs). Namely, test selection only needs one step. 3) Goal.
In active learning, the goal is to select a small amount of data to train a DNN that achieves a similar
performance as using the entire data. While in test selection, the goal is to enhance the performance
of a pre-trained DNN by retraining with a small amount of data.

2.3 Out-of-distribution Detection

Generally, although we introduce some bias (e.g. applying image transformations to the training
data [41]) into the model during the training process, the DNN model can mainly correctly predict
the data that follow the same distribution as the training data. When testing the accuracy of DNNs
on new data, the prediction may be erroneous and unreliable since the data may follow a different
distribution compared with the training data.

The out-of-distribution (OOD) technique, also known as outlier detection and anomaly detection,
aims at distinguishing data concerning the distribution. Existing OOD approaches [14, 22, 25, 33, 36]
use different methodologies to predict an anomaly score for a test input as the likelihood of following
a learned distribution by a DNN model. However, the main goal of these approaches is to detect
the data that come from two different datasets, e.g., MNIST and Fashion MNIST. In this work, we
try to use the OOD detection method to detect the data that are from the mutated version derived
from a dataset. The mutated version is generated by image transformations or adversarial attacks.

3 OBJECTIVES AND PROBLEM FORMULATION

Let us consider a N-class classification task over data X C R and labels Y C Z. Let f : x — y refer
to a DNN trained on X* c X, with x € X and y € Y. We denote the distribution of the data X in g
D;,, and we refer to these data as the ID data. Now let X°“! be a set of data that follow a mixture of
distributions D;y,, Dyyr Where D,y is an arbitrarily complex (possibly a mixture) distribution that
differs from D;,. That is, X°“ is a data sample that results from a distribution shift from D, to
Din, Dour. We furthermore assume that X°% is unlabelled and we name these data the OOD data.

Our goal is to decrease the computational and human effort to improve models when distribution
shift occurs. We aim to maximize the performance (e.g. accuracy) of the DNN on some X%, c X4,
We assume that we are allowed to change neither the architecture nor the hyperparameters of the
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DNN. Instead, we follow the straightforward and low computation-cost method that consists to
retrain the model for an additional number n of epochs with an independent sample X2%. < X°"
that has no overlap with X7*,. Given that we aim to minimize labeling cost, we also want [XP%.
to be under a predefined data budget b.

To address this challenge, we empirically investigate two key factors that may affect the effec-
tiveness of retraining: the retraining process and the selection metric - i.e. the metric used to select
X4t from X°*'. Our analysis of the literature has revealed two types of retraining processes:

train
retrain with X!, . only or with a mixture of X?*/ and Xj,. As for selecting X?". = we consider

train
selection metrics that have been proposed in the literature and have also been used for retraining

(3, 8, 16, 24, 38].

4 EMPIRICAL STUDY METHODOLOGY

First of all, to answer the first three research questions, we conduct a comprehensive empirical
study to explore how retraining processes and data distribution affect the effectiveness of selection
metrics for model retraining. This study provides the motivation for our proposed distribution-
aware selection metric (Section 6).

4.1 Study Design

Original dataset —SBIit @ @ @ —> Pre-train

Training set ID candidate set ID test set
-+ -
Distribution shift dataset —SEIt . ] @ @
00D candidate set 00D Test set
n n
@ @ @ == Retrain
Training set Candidate set Test set

Fig. 1. Procedure of data preparation. ID and OOD are short for in-distribution and out-out-distribution,
respectively. All candidate sets are unlabeled, and the others are labeled.

To conduct the empirical study, we first prepare the data as shown in Figure 1. Given a dataset,
we randomly split it into three separate sets, training set, ID candidate set, and ID test set, to
build pre-trained DNNs. Afterward, we partition the distribution shift (OOD) dataset into the OOD
candidate and test sets. Please refer to Section 4.4 for details of obtaining distribution shift datasets.
Finally, we combine ID and OOD data with a certain ratio to simulate different distribution shifts.
For instance, 10% ID + 90% OOD indicates that the new data has a dramatic shift where 90% data are
unseen by pre-trained DNNs. In our study, we use 11 different combinations with the ratio ranging
from 0% to 100% at a 10% interval. The candidate set represents new unlabeled data for selection
and retraining, and the test set follows the same distribution as the candidate set for performance
evaluation.

Figure 2 gives an overview of our empirical study. 1) We first prepare pre-trained models for
each dataset, 2) then utilize different selection metrics to select and label data. Next, 3) we use
the selected data to retrain the pre-trained model with another few epochs. Finally, 4) we test the
retrained models on both the ID and new test sets.

One factor that could highly affect the performance of the retrained model is the retraining
process. In the literature, there are mainly two processes for model retraining. One is to retrain
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using only the selected data [16, 38]. The other is using both the training and selected data [8]. To
answer RQ1, we apply both processes separately to produce two retrained DNNs. Next, we test
the retrained models on test sets and compute their performance. Later, based on the findings of
RQ1, we will apply the better retraining process to analyze how the data distribution would affect
the effectiveness of each selection metric for model retraining and answer RQ2. In this phase, we
only consider the test accuracy of retrained models. Furthermore, we investigate the properties of
selected data by different selection metrics to answer

RQ3.
Selection 9 Select I
! metrics {— >
Candidate set Selectj[d set

Selected set + Training set

1
: |
! 1
: - I @ g
| 1
! Selected set ‘
1
1

ID testset  Test set

} P
O, =

@ oTrain
s

Training set Accurac
DNN v
RQ1: which retraining RQ2: how effective are the RQ3: what are the characteristics
/® process is better? ’@ test selection metrics? ’® of selected data?

Fig. 2. Overview of our empirical study.

4.2 Datasets and DNNs

In our empirical study, we consider 5 publicly available datasets, MNIST [21], Fashion-MNIST
[51], CIFAR-10 [19], IMDb [28], and Newsgroups [20]. MNIST is a collection of grayscale images
of hand-written digits, e.g., 1, 2. Fashion-MNIST includes grayscale images of fashion products,
e.g., coat, shirt. CIFAR-10 contains color images, e.g., airplane, bird. IMDDb is a dataset containing
movie reviews that are widely used for sentiment analysis (i.e., positive or negative). Newsgroups
is a text dataset that includes 20 different newsgroup subjects, e.g., space, baseball. For MNIST,
Fashion-MNIST, and CIFAR-10, we randomly pick 10000 data from the training set as the candidate
set. For IMDb and Newsgroups, we randomly collect 5000 and 4000 data from the training set as
the candidate set, respectively. For each dataset, we use two different well-known DNN models in
previous researches. For the image datasets, we consider the famous convolutional neural networks
(CNNs), for example, LeNet and ResNet. Since recurrent neural networks (RNNs) are good at
handling sequential data, we utilize embedding layers to encode the text into vectors first, then
we use RNNs to process the vectors and predict sentiment results. Besides, we follow [13] to build
the fully connected neural network for Newsgroups dataset. Hence, our study covers image and
text data, feed-forward and recurrent neural networks. All the detailed model architectures and
hyper-parameters are available on our project website 1. Table 1 shows details of the datasets and
DNNs. We measure model performance in terms of accuracy, as it is the metric originally used for

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:8 Qiang Hu, Yuejun Guo*, Maxime Cordy, Xiaofei Xie, Lei Ma, Mike Papadakis, and Yves Le Traon

the tasks and datasets that we study. Note that since we do not use all the training data to train the
model, the test accuracy of each model may not achieve the state-of-the-art.

Table 1. Datasets and DNN models. “Test accuracy” is the accuracy (%) of the ID test set (see Figure 1).

Dataset Data Type #Training #Test #Classes DNN #Layers #Parameters Test accuracy (%)
MNIST Image 60000 10000 10 EZEZ:; 3 13332 - 257;:3(1)
Fashion-MNIST  Image 60000 10000 10 iZﬁZ:; ; 12332 - 2(7):32
CEARI0 mege o0 e 10 KoNe w i E79
IMDb Text 25000 5000 nggl : ;Zz?zgi gzz;
Newsgroups Text 4000 1000 20 ﬁﬁ; ; izgzgg g?;g

4.3 Selection Metrics

Various selection metrics have been proposed and evaluated for data prioritization and data labeling
effort reduction. In this study, we choose 4 metrics (MCP, DeepGini, CES, and DSA) proposed in the
SE community. Note that MCP, CES, and DSA have been evaluated as the best metrics in a recent
study [38] compared with the others, such as the likelihood-based surprise adequacy (LSA) [16]
and adaptive active learning (AAL) [23]. DeepGini is a newly proposed method for enhancing the
performance of DNNs. Additionally, we take the random selection metric as the baseline. Given that
the task of active learning within each stage is similar to test selection (please refer to Section 2.2
for more details), the most basic and popular metric, Entropy, [46] is also considered for comparison.
We briefly introduce each metric as follows.

Throughout the paper, we use p; (x), 0 < i < N to represent the predicted probability of x
belonging to the ith class.
1) Random Random selection is a basic and the simplest selection method. It draws data directly
from the given set regardless of the model’s behavior. Each data is randomly selected, namely, has
the same probability of being chosen.
2) Multiple-Boundary Clustering and Prioritization (MCP) MCP [38] selects test data limited
in decision boundary areas. Concretely, it proceeds in three steps. First, the DNN model runs on
each test sample to give a sequence of output probabilities. Second, MCP conducts a boundary
area clustering to divide the data into different clusters. A cluster (the boundary area between
two classes) is formed according to the top-2 classes of test data. Besides, for each test data, MCP
computes its priority in its belonging cluster as the ratio of the probability of the first class to the
probability of the second class. Finally, test data with high priorities are evenly selected from each
non-empty cluster. The intuition behind MCP is that if the top-2 probabilities of a test sample are
close, this sample is close to the decision boundary between the corresponding two classes.
3) Cross Entropy-based Sampling (CES) The main idea of CES [24] is to select a subset of test
data that can maximally represent the distribution of the entire test dataset via the cross entropy.
More specifically, this subset should have the minimum cross entropy with the entire test dataset.
To solve this optimization problem, CES utilizes a similar algorithm to the random walk [35]. It
starts with a random subset T (smaller than the budget) with a few test data, then repeatedly
enlarges T by merging another subset P that is randomly selected and has the minimum cross
entropy with T.
4) Distance-based Surprise Adequacy (DSA) DSA [16] is an adequacy criterion that aims at
measuring how surprising a test sample is to a DNN model concerning the training data. It computes
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the surprise adequacy by the Euclidean distance between the model’s behaviors represented by the
activation traces of the test sample and the training set. Finally, the data with high adequacy are
selected.

5) DeepGini Similar to Entropy, DeepGini [8] also selects the most uncertain data using the output
probabilities by:

N
arg max (1 - (i (x))z) (1)
x€X i=1
6) Entropy based metric (Entropy) As a widely used information-theoretic metric, entropy, also
known as Shannon entropy [37], measures the average level of information required to obtain
a possible prediction. In other words, it calculates the uncertainty for a DNN model to output
a prediction. Based on this concept, Entropy [46] selects the test data that have the maximum
uncertainties, and its formal definition is:

N
arg max (— 2.1 (x)logp; (x)) @)
x€X i=1

Most of the aforementioned metrics (MCP, CES, DeepGini, and Entropy) are only designed for
classification tasks since they require the output probability of each class in their methodologies.
The only exception is DSA, which also works for regression tasks. Our metric DAT is also designed
for classification tasks — one objective of DAT is to collect data with balanced classes. Therefore, in
our study, we only focus on the classification tasks. Nonetheless, to the best of our knowledge, our
study is the largest one that considers both image and text classification tasks with both synthetic
and natural distribution shifts.

4.4 OOD Data Preparation

In our study, we consider two types of distribution shift, synthetic and natural. Both are widely
studied in recent works [13, 42].

4.4.1 OOD data with synthetic distribution shift. Synthetic distribution shift comes from the
computer-generated perturbation. In the literature [1, 17, 38, 43], there are two types of image
mutation methods to generate noise data: image transformation [41] and adversarial attack [34].
Table 2 describes the six image transformations and the two adversarial attacks used in our study.
Image transformation applies basic geometric transformations to mimic different real-world con-
ditions such as changing the contrast or brightness of images and rotating the camera. Here, we
consider transformations that are common in the real-world and whose relevance has been shown
in previous studies [1, 38, 41]: rotation, shear, translation, scaling, brightness and contrast. We
follow [1, 38] to set up the parameters of these transformations, for example, for MNIST-scale,
we set the scale coefficient as 0.8. All the parameters of image transformations can be found on
our project site 1. Adversarial attacks add an imperceptible perturbation into an image to mislead
DNNs. These attacks have been associated with distribution shifts and can be useful to improve the
generalization ability of ML models [10]. We use two of the most common attack algorithms, FGSM
[10] and PGD [29]. We utilize the L;,s distance to calculate the perturbation with a commonly used
[29, 50] maximum size of 0.3 (8/255) for MNIST and Fashion-MNIST (CIFAR-10).

To make sure that each mutation method (i.e. each image transformation and adversarial attack)
introduces distribution shifts, we empirically show that there is a greater distribution difference
(1) between the original training set and the original test set and (2) between the original training
set and the mutated test set. If (2) is greater than (1), then it would mean that the mutations
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induce a distribution shift compared to the natural difference that is due to data generalization. To
measure such distribution differences, we combine a state-of-the-art Outlier Exposure (OE) detector
[14] (more details in Section 6.1) and Jensen-Shannon Divergence (JSD) score [9]. OE enables the
identification of data that do not belong to a given distribution (in our case, the original training set
determines the distribution). It assigns a score to each example, where a higher score means that
the example is farther from the given distribution. To build the OOD detector, we need a baseline
of out-of-distribution data (OOD) that are clearly not from the original distribution. In our case, to
build the OOD detectors for MNIST, Fashion-MNIST and CIFAR-10, we use, respectively, Fashion-
MNIST, MNIST and SVHN. The reason behind this choice [1] is that MNIST and Fashion-MNIST
are black-and-white images, whereas CIFAR-10 and SVHN are colored. Once we have an OOD
detector, we predict the score of the examples in the two test sets and build the corresponding two
histograms. We calculate the JSD between the two histograms. JSD is an established metric for the
dissimilarity between two probability distributions. A higher JSD indicates higher dissimilarity.
Table 3 lists the results. The JSD between the original training and test sets (at most 0.07) is much
smaller than the JSD between the training and mutated sets (at least 0.21). For Fashion-MNIST,
Some mutated sets have an even greater JSD scores than the OOD sets, revealing that the shifts that
mutation induce can be more significant than a shift to a completely different dataset. In conclusion,
these results confirm that the used mutations are indeed appropriate to emulate distribution shifts.

Table 2. Description of mutation operators

Type Mutation Operator Description
Rotation Rotate an image by a certain angle
Shear Shear an image horizontally
. Translation Translate several pixels down right
Transformation . .
Scale Change the size of an image
Brightness Adjust the brightness of an image
Contrast Adjust the contrast of an image
FGSM Fast gradient sign method
Attack PGD Project gradient descent

Table 3. JSD between training set and other sets

Test Brightness Contrast Rotration Scale Shear Translation FGSM PGD OOD

MNIST 0.05 0.77 0.52 0.61 0.62 0.57 0.56 0.73 0.65 0.77
Fashion-MNIST 0.05 0.62 0.36 0.48 0.53 0.55 0.52 0.56 0.38  0.44
CIFAR-10 0.07 0.21 0.50 0.51 0.57 0.47 0.47 0.40 0.25  0.60

OOD data with natural distribution shift. Natural distribution shift comes from unseen
environments. For the text datasets, it is easy to collect this kind of OOD data that targets the
same task as the ID data, e.g., we can collect the movie reviews from different websites and groups
of people. We obtain such datasets (IMDb and Newsgroups) from the baseline work [13] directly.
Following the same settings as [13], for the IMDDb dataset, we use the combination of customer
reviews and movie reviews as the OOD data. For the Newsgroups, we randomly choose 10 groups
as the ID data and 10 groups as the OOD data.

Table 4 lists the average accuracy of models on test sets under different distributions. We can
see that the accuracy degrades gradually when the test set includes OOD data, which confirms
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Table 4. Average test accuracy (%) of the test set (see Figure 1).

Distribution MNIST Fashion-MNIST CIFAR10 IMDb Newsgroups Average

ID+O0OD LeNet-1 LeNet-5 LeNet-1 LeNet-5 NiN ResNet20 LSTM GRU NN NN2

0% + 100% 28.65 36.23 22.62 20.19 51.05 46.90 68.36  67.58 0.40 6.90 34.89
10% + 90% 35.59 42.44 29.11 27.37 54.68 50.85 70.04 69.44 9.00 14.00 40.25
20% + 80% 42.40 48.66 35.51 34.33 58.35 54.69 71.78 71.56 17.50 21.90 45.67
30% + 70% 49.28 54.82 41.86 41.30 61.95 58.50 73.64 7394 26.20 29.60 51.11
40% + 60% 56.19 61.03 48.31 48.02 65.48 62.51 7548 7556 35.20 37.50 56.53
50% + 50% 63.14 67.46 54.87 54.95 68.99 66.29 77.34  77.60 44.40 45.00 62.00
60% + 40% 70.14 73.67 61.36 61.95 72.74 70.27 79.04 7946 53.10 52.30 67.40
70% + 30% 77.04 79.74 67.75 68.97 76.34 74.28 81.26 8152 61.70 60.00 72.86
80% + 20% 84.10 86.06 74.26 76.17 79.90 78.03 83.08 83.52 69.70 66.50 78.13
90% + 10% 90.88 92.24 80.79 83.18 83.51 81.95 84.46 8520 7820 73.70 83.41
100% + 0% 97.91 98.90 87.29 90.29 87.16 85.79 86.06 86.94 86.70 81.00 88.80
Average 63.21 67.39 54.88 55.16 69.10 66.37 77.32  77.48 43.83 4440 61.91

that distribution shift indeed weakens the reliability of the pre-trained DNN and it is necessary to
enhance this DNN.

4.5 Retraining Settings

Like previous studies [8, 16, 38] and following our working assumptions, during the retraining
process, the hyperparameters are set in the same way as the pre-trained DNN, such as the DNN
architecture, momentum, batch size, activation function, dropout, optimization, learning rate, and
loss function. Besides, for the number of epochs, we retrain the LeNet-1 and LeNet-5 with additional
5 epochs as [38], 10 epochs for ResNet-20 and NiN as [55]. We do not follow the same setting as [38]
to use 5 epochs to retrain the CIFAR-10 based models. The reason is that we found in some cases, 5
epochs are not enough for the model weights to converge. As shown in Fig 3, for MNIST-based
models, the test accuracy of original test data and new test data are almost the same after using
5, 10, and 15 epochs to retrain the models. However, for the CIFAR-10 based models, there are
clear gaps of the test accuracy on the new data when using 5 epochs to retrain models compared
with using 10 and 15 epochs to retrain, especially when the labeling budgets are 3% and 5%. Since
this is the first work to evaluate the aforementioned selection metrics for model retraining on text
datasets, we follow our practical experience to set 5 epochs to retrain IMDb- and Newsgroups-based
models.

100 oo  ——  — 7 — =3 85 4 -
0
,
%
%
// 80
= 901 e =
g . g
< /,’ =757 -e- sori K]
[ - 9] 10-ori %
o - © "
O 804 = S 0] -e- 15-0ri P
5 s 570 "
[9] » o -®- 5-new s
O e 1*) 4
< L < -®- 10-new pd
o e 4} 657 -@- 15mnew il
2 701 2 -@- S-ori 4 P
e 7 10-ori = A
/, ~®- 15-ori
L -e- S-mew
601 vl -®- 10-new
P ~-®- 15-new

3% 5% 10%

100%

Labeling Budget
(a) MNIST, LeNet-5

5%

10%

Labeling Budget
(b) CIFAR-10, ResNet20

100%

Fig. 3. Test accuracy of original test data and new test data after using random selection metric to select
different budgets of data and retrain the model. 5-ori means the test accuracy on original test data after
retraining the model with 5 epochs.
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4.6 Repetitions and Infrastructure

Each experiment is repeated 5 times to reduce the randomness introduced in the training process.
All the experiments run on a high-performance computer cluster, and each cluster node runs a 2.6
GHz Intel Xeon Gold 6132 CPU with an NVIDIA Tesla V100 16G SXM2 GPU.

5 EXPERIMENTAL RESULTS

We report the experimental results to answer each RQ and summarize our findings. Remember that
the combined candidate set without labels represents the new coming data where selected data for
model retraining come from. The combined test set with labels is for testing the resulting accuracy
of DNNs. We create these two sets in a way that they contain the same percentage of ID data and
OOD data.

5.1 RAQT1: Different Retraining processes

Our goal is to analyze which retraining process can maintain high accuracy on original test data
and meanwhile achieve high accuracy on new data. We denote by Type 1 the process that retrains
the model with the new data only, and by Type 2 the process that retrains the model using a
combination of new data and previous training data. To determine which retraining process is better,
we compare the accuracy improvement of DNNs after retraining using each process. For each DNN,
we create 11 sets of unlabeled data as well as 11 sets of test data following different data distributions
by combining ID and OOD data. Next, each metric (of 6) selects a certain ratio (budget) of data from
each unlabeled candidate set for labeling and model retraining. In our study, the ratio of selected
data is set to 1%, 3%, 5%, and 10% as [38]. Besides, to exclude the effect of selection metrics on the
retrained models, we also consider using all the candidate data (i.e., with budget 100%) to retrain
the DNN models by different retraining processes. Finally, we calculate the accuracy improvement
of DNNs after retraining. In total, we have retrained 71280 DNN models, 3 datasets x 2 models
X (6 selection metrics X 4 budgets + 1 budget) x 11 distributions X 8 operators X 5 repetitions
image-based models, and 2 datasets X 2 models X 6 selection metrics X 4 budgets x 11 distributions
X 5 repetitions text-based models. Table 5 and Table 6 show the statistical improvements of test
accuracy over the 71280 DNNs of the original and new test data, respectively. In each table, the
first column represents the data distribution of the candidate set. For instance, 10% + 90% indicates
that the candidate set consists of 10% ID data and 90% OOD data.

In the case of maintaining performance on original test set, as demonstrated by Table 5, in most
cases (512 out of 550) over 5 datasets, retraining process of Type 2 achieves better results than
Type 1. And on average, in all the cases, the retraining process of Type 2 achieves better (by up to
29.52%) results than Type 1. Namely, retraining using the combination of new selected data and
training data is a better option than using only the new selected data for this objective. Now look
into Table 6, surprisingly, retraining with only the new data does not ensure higher accuracy on the
new test data in most cases. In general, only in 153 cases (out of 550 cases), the retraining process
of Type 1 achieves better accuracy than Type 2. On average, we can see that only when more (at
least 80%) OOD data are included in the candidate set, the retraining process of Type 1 can achieve
better results (by up to 4.28%) than Type 2. Note that, meanwhile, the accuracy of the original
test data is greatly sacrificed. For instance, in the case of 100% OOD data and Budget 10%, Type 1
improves the accuracy on the new test set by 48.46%, but the accuracy on the original test set drops
significantly by 29.84%. Besides, this outperformance on new test sets degrades with a smaller
budget is available. Overall, on average, retraining using both the training data and the newly
selected data better enhances the model without losing the high performance on the original test
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Table 5. Average (over all selection metrics) improvement of test accuracy (%) on original test sets (ID test
data) with different selection budgets. The better result between the two types of retraining processes is
highlighted in gray. Type 1: using only the new data; Type 2: using the combination of new selected data
and training data. “Distribution” represents different distribution shifts by different percentages of ID and
OOD data in the candidate set. Baseline: Please refer to Table 1 for the accuracy of pre-trained DNNs.

Distribution Budget 1% Budget 3% Budget 5% Budget 10%  Budget 100% Budget 1% Budget 3% Budget 5% Budget 10%  Budget 100%
D + 00D Type1 Type2 Typel Type2 Typel Type2 Typel Type2 Typel Type2 Type1 Type2 Typel Type2 Typel Type2 Typel Type1 Type2
0% + 100% -8.50 0. -18.87 0.32 -16.82 0.27 -22.28 -29.04 -13.41 -0.03 -25.70 03 -25.95 -35.98 -30.84 0.01
10% + 90%  -5.25 0.40 -15.35 0.35 -14.64 0.34 0.27 -8.27 -12.39 -0.02 -22.47 -23.83 -28.27 -4.21 0.02
20% + 80% -4.70 0.40 -11.79 -9.96 0.31 0.27 -5.35 -10.37 -0.03 -19.42 -18.54 -2.61 0.02
30% + 70% -3.71 0.39 -9.30 -9.08 035 0.28 -3.92 -8.14 -0.04 -17.83 -15.01 -1.78 0.05
407 +60% 239 | 039 968 -9.08 037 026 291 770 | 004 | -12.87 1173 137 | 002
MNIST  50%+50% -107 | 041  -554 6.99 038 028 227 MNIST 670 | 003 -999 853 105 | 004
LeNetl 607 +40% 092 | 040  -497 -458 2 LeNets 411 | 005 640 553 073 | 005
70%+30% 065 | 039 314 391 332 003 491 472 053 | 005
80%+20% -089 | 042 262 242 S84 | 001 | -348 322 004
90% +10% -036 | 042 -144 122 096 | 003 262 166 005
100% +0% 007 | 042 007 014 075 | 006 069 -0.18 0.06
Average 0.40 -7.14 -6.34 -0.02 -11.49 -10.81 0.04
0% + 100% 0.07 -24.28 -19.26 0.07 -22.65 -20.98 -0.24
10% +90% 0.19 -17.83 1363 | 000 -19.67 -18.48 022
20% + 80%  -9.80 0.17 -13.47 -14.81 -9.83 0.04 -16.87 -17.59 -0.11
30%+70% -605 | 004  -1165 1312 823 | 001 | -1481 -17.23 0.04
40%+60% 360 | 008 -1037 1072 697 | 004 1398 -15.21 007
F-MNIST  50%+50% 331 014 -943 -10.02 F-MNIST  -651 | 002 -1144 -13.79 008
LeNetl  60%+40% 251 | 011  -556 8.26 LeNet5 403 | 009 | 971 -12.37 0.16
70%+30% 197 | 042 -3.99 5.94 270 | 010 | -922 -10.84 021
80% + 20% -1.84 0.03 -2.45 -4.01 -1.91 0.23 -6.31 -8.84 0.26
90% + 10% -1.07 0.04 -1.55 2.38 -1.33 0.24 -4.44 -5.96 0.35
100% + 0% -0.40 -0.03 -0.57 -0.52 0.00 0.23 0.11 -0.02 0.44
Average -5.86 0.09 -8.94 -10.17 -6.76 0.10 -11.73 -12.85 0.09
0%+100% 664 | -043 939 931 1428 | 058 1617 -18.82 045
10%+90% 374 | 059 -7.97 -6.84 1213 | 056 1790 -15.82 041
20%+80% 210 | 052 -6.19 5.92 756 | 051 | -1284 -13.40 029
30%+70% 213 | 046 644 -4.50 331 | 048 -954 -1145 024
40% +60%  -133 | 057 -354 298 234 | 046 392 829 -0.30
CIFAR-10 50% + 50% 037 -0.38 0.11 2.67 CIFAR-10 -1.81 -0.41 -3.05 -4.72 -0.18
ReNet20 60% + 40% 0.88 -0.35 0.61 -0.04 NiN -1.78 -0.41 -2.82 -3.64 -0.21
70% + 30% 1.06 -0.30 0.55 -0.09 -1.66 -0.39 -2.95 -3.78 0.00
80% + 20% 118 -0.24 0.51 0.29 -1.63 -0.36 -2.98 -3.51 -0.02
90% + 10% 118 -0.19 0.58 0.26 -1.61 -0.35 -2.72 -3.30 0.13
100% + 0% 114 -0.24 0.57 0.66 -l.64 -0.30 -2.48 -3.40 0.21
Average -0.99 -0.39 -2.78 -2.83 -4.52 -0.44 -7.04 -8.19 -0.16
%+100% 044 | 068  -220 376 003 | 054 -178 442 059
10%+90% 016 | 064 127 -112 01z | 047 | 234 130 0.67
20% + 80% -0.25 0.49 -1.54 -1.29 -0.06 0.51 -0.57 -1.68 101
30% + 70% -0.30 0.75 1.32 -0.10 -0.18 0.45 -0.42 -0.52 1.03
40% + 60% -0.49 0.81 -0.03 0.38 -0.31 0.49 -0.18 -0.02 0.88
IMDB 50% + 50% 0.27 0.90 -0.21 0.39 IMDB 0.16 0.41 -0.08 0.63 0.18 125
LSTM 60% + 40% 0.36 0.93 -0.45 0.49 GRU 0.13 0.61 0.05 0.47 0.43 140
70% + 30% 0.87 -0.34 0.08 0.11 0.49 0.25 0.52 0.19 149
80% + 20% 0.85 0.48 0.68 0.09 0.64 0.18 051 0.24 152
90% + 10% 089 018 045 015 | 057 016 | 066 039 156
100% + 0% 085 063 074 016 | 052 010 | 065 063 171
Average 0. 079 055 -0.28 001 | 052 042 _ 052 053 119
0% +100%  -27.82 0.33 62.95 66.43 73.60 0.75 -72.67 0.16 -67.37 -0.03
10% + 90%  -18.86 0.43 47.79 45.39 48.54 127 -32.12 0.59 -29.14 1.83
20% + 80%  -14.97 0.30 -32.33 31.81 -38.16 118 -25.26 0.88 -18.47 240
30% + 70%  -12.22 0.31 -16.04 -20.89 -25.13 111 -18.88 1.04 -15.75 3.10
40% + 60% -9.20 0.54 -7.64 -15.92 -18.16 119 -16.44 085 -13.18 3.01
Newsgroups 50% +50% -275 | 057 631 -11.86 Newsgroups -1245 173 -1030 = 162 917 414
NN 607 +40% 172 | 042 369 060 630 NN2 984 | 152 | 813 | 165 701 477
70%+30% 016 | 066 323 | 068 -2.68 834 | 134 | -669 | 182 493 516
807%+20% 014 079 069 079 053 794 | 156 | -404 | 190 324 571
90% +10% 021 | 060 001 0.65 014 283 | 176 | -430 | 218 -146 614
100%+0% 020 | 062 -001 | 068 057 562 | 181 | 145 | 217 012 630
Average 792 | 051  -1642 056 -1831 2278 | 138 1821 | 135 | -1544 386
Distribution Budget 5% Budget 10% Budget 100%
D + 00D Type1 Type2  Typel Type2 Typel Type2
0% + 100% 2581 0.04 2740 [001 | -29.84 | -032

10% + 90% 0.07 1810 | 010 -840

20% + 80% 0.10 1481 | 045 471

30% + 70% 023 S7z | 022 300

40% + 60% 027 942 | 032 198

Average 0% 750 033 807 | 036 -125

60% + 409 041 626 | 044 -0.60

70% + 307 3.66 0.43 -4.80 0.52 -0.15

80% + 20% 2.46 0.44 -3.27 0.58 0.24

90% + 10% 1.50 0.53 -1.83 0.64 0.61

100% + 0% 0.15 0.56 -0.80 0.73 112

Average -8.66 0.31 -9.68 0.37 -4.36

data. We can conclude that this retraining strategy achieves a good balance between the original

and new test sets.

Answer to RQ1: Retraining DNNs with only the new selected data sacrifices accuracy on
the original distribution for improvement on the new distribution. By contrast, mixing the
training data with the new data can achieve high accuracy on both the original and the new
distributions. More specifically, retraining on new data only achieves higher test accuracy only
when there are more than 80% OOD data in the candidate set. Overall, combining training data
and selected data remains the best option.
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Table 6. Average (over all selection metrics) improvement of test accuracy (%) on new test sets with different
selection budgets. The better result between the two types of retraining processes is highlighted in gray.
Type 1: using only the new data; Type 2: using the combination of new selected data and training data.
“Distribution” represents different distribution shifts of the candidate set. Baseline: Please refer to Table 4
for the accuracy of pre-trained DNNs.

Distribution Budget 1% Budget 3% Budget 5% Budget 10%  Budget 100% Budget 1% Budget 3% Budget 5% Budget 10%  Budget 100%
D + 00D Type1 Type2 Typel Type2 Typel Type2 Typel Type2 Typel Type2 Type1 Type2 Typel Type2 Typel Type2 Typel Type2 Typel Type2
0% + 100% 6.71 9.86 15.22 16.73 19.23 2143 35.63 30.88 61.87 63.82 23.99 21.55 32.05 33.18 37.09 4118 43.69 49.33 60.56 61.27
10% + 90% 5.79 9.20 1249 14.84 15.84 18.57 29.51 27.38 54.96 56.97 19.12 19.55 27.68 30.81 30.78 36.63 35.81 44.37 54.19 55.13
20% + 80% 4.99 8.20 9.41 13.02 13.24 16.50 2431 24.04 48.24 50.11 15.57 16.92 22.03 27.33 25.75 3292 29.77 39.61 47.97 48.84
30% + 70% 441 747 8.20 11.57 1115 14.48 18.63 20.24 41.50 4333 12,62 15.54 16.96 2434 20.89 28.31 23.88 3448 41.89 42.70
407 +60% 379 | 670 597 9.95 858 1264 1406 | 17.64 3492 | 3656 1026 | 1374 | 1315 | 2099 1682 | 2482 1851 2987 3588 | 3662
MNIST  50%+50% 287 | 561 389 842 6.29 1100 993 | 1492 2846 2989  MNIST 859 | 1189 984 | 1770 1236 | 2097 1403 | 2495 2974 3035
LeNetl 607 +40% 244 | 462 323 7.00 428 903 665 | 1222 2201 2324 LeNets 666 | 969 699 | 1429 851 | 1656 971 | 1990 2374 | 2424
70%+30% 136 | 340 182 546 253 695 385 | 930 1582 | 1658 440 | 706 379 | 1069 525 | 1243 753 | 1496 1783 1817
80%+20% 070 | 228 053 385 130 463 269 | 620 954 | 1009 250 | 462 184 | 720 287 | 807 427 161 | 1182
90%+10% 032 | 132 014 201 0.66 242 168 | 309 387 | 420 106 | 253 005 | 365 129 | 404 166 566
100%+0% 007 | 041 | 007 043 014 047 018 | 047 015 | 046 076 | 009 | -068 042 016 | 011  -017 0.10
Average 304 | 537 554 848 7.57 1074 1338 1503 2921 3048 946 | 1120 1215 | 1730 1468 | 2055 1715 3044
0% + 100% 10.15 4.59 19.07 8.02 2635 12.59 3224 20.28 54.49 51.27 14.66 12.28 28.15 19.80 36.37 26.75 45.44 61.99
10%+90% 411 | 428 1373 | 679 21.94 967 | 2871 1644 | 4760 4519 1044 11050 2413 1714 | 3104 2307 | 3944 55.27
20%+80% 321 | 381 859 5.9 1537 856 | 2237 1321 | 4154 3982 839 | 999 1791 1531 | 2370 1984 = 3233 4883
30%+70% 268 | 378 645 5.46 1070 752 | 1581 1183 | 3543 3412 611 | 869 1213 | 1329 1885 1763 | 2616 4243
40%+60% 151 | 312 482 4.66 839 676 | 1207 1009 | 2968 2858 411 | 745 903 | 1160 1367 [ 1545 2012 36.08
F-MNIST  50%+50% 057 | 260 273 411 505 574 828 | 853 2354 2290 F-MNIST 287 | 612 628 | 1026 905 = 1326 1379 2948
LeNetl  60%+40% 036 198 165 320 320 460 507 | 687 1801 1760 LeNet5 183 | 510 453 | 855 611 | 1062 918 2311
70%+30% 031 | 152 150 264 148 339 286 | 509 1292 1253 080 | 395 157 | 677 254 | 818 512 17.08
80%+20% 071 | 112 084 198 -0.20 232 057 | 349 755 741 029 | 267 053 463 046 | 539 162 1094
90% + 10% -0.66 0.68 -0.32 114 -0.98 124 -0.63 171 2.83 292 -0.33 148 -2.10 229 -2.28 2.66 -0.42 5.05
100% + 0% -0.40 0.26 -0.56 0.31 -0.53 0.12 -0.26 0.30 0.02 0.27 -0.02 0.22 0.11 0.25 -0.02 0.14 -0.42 0.44
Average 1.80 2.52 5.32 4.02 8.25 5.68 11.55 8.90 24.87 23.87 447 6.27 9.20 9.99 12.60 13.00 17.49 30.06
0%+100% 1294 730 | 1470 865 1800 1076 | 2269 1449 | 3381 27.26 489 | 788 467 | 855 750 | 1021 1160 28.19
10%+90% 741 627 | 963 721 1333 858 | 1837 1184 | 2976 2395 268 | 694 281 | 660 575 | 779 884 25.09
20% +80% | 656 | 574 | 7.82 599 931 721 | 1266 939 | 2608 2095 022 | 623 | -004 569 297 | 660 501 2157
30%+70% | 549 | 496 | 585 552 727 614 | 866 774 | 2231 1783 287 | 544 | -162 | 475 026 | 551 @ 097 18.42
40%+60% 453 413 | 455 420 574 484 | 628 559 | 1862 1455 268 | 093 | -241 | 400 268 | 448  -116 1517
CIFAR-10 50% + 50% 3.59 344 3.67 3.49 3.94 3.96 4.06 4.43 15.10 11.58 CIFAR-10 -2.26 -0.24 -2.67 311 -3.68 3.52 -3.12 1195
ReNet20 60% + 40% 2.81 0.40 2.96 247 2.76 2.99 224 3.21 1146 8.81 NiN -2.85 -0.89 -2.74 233 -3.48 273 -4.64 9.02
70% + 30% 2.33 -0.08 212 175 1.85 1.93 0.08 1.93 7.95 6.03 -2.45 -1.64 -3.19 159 -3.40 182 -6.40 6.13
80% + 20% 1.85 -0.64 152 0.98 134 117 -1.31 1.09 491 3.68 -2.08 -3.07 0.77 -3.42 0.98 -6.97 141 3.54
90% + 10% 146 -1.11 101 0.20 0.67 0.34 -2.45 0.20 233 153 -2.07 -2.72 -2.62 0.25 -3.11 0.32 -7.13 0.53 141
100% + 0% 111 -1.46 055 -0.22 0.63 -0.13 -4.34 -0.48 0.60 0.27 -1.92 -3.15 -2.45 -0.34 -3.36 -0.23 -7.32 -0.74 0.22
Average 4.55 2.63 494 3.66 5.90 434 6.08 5.40 15.73. 1240 -1.08 1.50 -1.21 339 -0.65 3.98 -0.94 5.08 12.79
%+100% | 083 | 042 | 088 065 117 055 | 128 063 | 263 189 144 | 156 039 | 145 007 147 000 | 145 3.00
10%+90% 048 | 057 050 071 092 046 | 093 059 190 [ 201 137 | 152 -030 | 156 054 142 011 | 135 288
20%+80% 036 | 057 044 072 080 066 | L14 058 | 187 159 094 | 114 012  L1I 079 | 136 026 151 221
30% + 70% 0.26 0.51 0.07 0.54 0.71 0.61 0.53 0.54 1.83 167 0.86 1.09 0.03 110 0.23 118 0.01 0.95 1.94
40% + 60% 0.01 0.48 0.37 0.55 0.27 0.33 0.85 0.41 167 151 0.62 1.07 0.28 1.05 081 116 0.57 110 172
IMDB 50% + 50% 0.33 0.60 0.17 0.51 0.64 0.53 0.94 0.63 2.03 114 IMDB 041 1.02 0.16 1.09 0.57 113 0.83 0.99 198
LSTM 60% + 40% 0.34 0.55 -0.30 0.74 0.21 0.59 0.94 0.74 170 145 GRU 0.33 0.87 0.32 0.89 042 0.90 1.01 0.94 164
70% + 30% 0.17 0.33 -0.39 0.66 0.11 053 1.06 0.65 2.14 121 031 0.60 0.44 0.69 041 0.67 113 0.72 1.51
80%+20% 011 | 059 031 0.67 058 065 103 061 181 118 025 | 063 020 057 040 070 090 | 071 166
90%+10% 032 080 017 075 048 095 115 09 202 143 021 | 053 016 063 032 | 063 095 078 146
100%+0% 017 | 085 063 0.98 074 094 089 [[H03 201 165 016 | 052 010 | 065 063 067 08 078 171
Average 031 057 026 0.68 0.60 062 098 067 197 152 063 | 096 015 098 033 103 058 | 103 197
0% + 100%  18.78 7.65 30.21 17.30 37.25 26.71 48.27 44.86 94.37 93.90 24.99 10.82 34.88 23.09 45.11 3240 55.98 46.03 85.08
10% + 90% | 14.13 6.20 2124 14.69 26.63 22.30 38.04 38.34 81.79 83.70 15.89 842 26.31 20.39 33.01 26.86 44.90 39.01 76.00
20% + 80% = 12.52 5.24 1422 12.40 21.84 19.64 31.35 32.65 7248 73.93 9.18 6.60 1875 16.92 25.30 23.10 36.39 33.74 67.30
30% + 70% 9.28 497 9.91 9.33 16.12 15.57 25.12 26.33 63.41 64.06 4.85 547 1270 1349 19.80 18.53 29.51 28.41 58.76
40% + 60% 6.41 3.93 7.62 7.79 9.67 11.87 20.53 2143 52.36 53.43 047 3.99 6.67 10.48 1293 1474 21.26 21.65 48.83
Newsgroups 50% +50% = 313 | 292 426 5.42 583 848 1403 | 1584 4183 | 4238 Newsgroups -220 | 345 329 | 772 732 | 1124 1580 | 1687 39.73
NN 607 +40% | 256 225 298 425 500 582 1033 | 1110 3167 | 3186 NN2 -173 | 260 | 136 | 589 463 | 803 1056 1243 3106
70%+30% 127 [ 164 155 315 369 438 653 | 705 | 2160 | 2235 311 200 | 040 | 464 255 | 671 | 716 | 928 2371
80%+20% 095 | 160 095 194 215 242 295 | 376 13160 1307 458 | 184 | 120 | 347 052 | 436 | 392 | 609 16.00
90% +10% 053 091 068 115 106 179 117 | 201 524 [1567 213 | 189 | 323 | 267 025 | 320 | 249 | 420 9.89
100%+0% 020 | 062 -001 | 068 057 084 066 | 114 222 | 259 562 | 181 | 145 | 217 | 002 | 274 | 190 | 345 630
Average | 634 | 345 | 851 7.10 1181 1089 1809 | 1859 4365 | 44.27 327 | 442 895 | 1006 1371 | 1381 2090 2011 42,06
Distribution Budget 1% Budget 3% Budget 5% Budget 10% Budget 100%
D + 00D Type1l Type2 Typel Type2 Typel Type2  Typel Type2 Typel Type2
0%+100% 1194 | 839 [ 1802 1374 | 2281 1841 2068 | 2589 [4846 | 47.77
10%+90% | 814 | 740 | 1382 1207 | 1798 15.54 2444 | 221 4261 [ 4262
20%+80% 615 [ 644 990 1045 1375 13.64 1956 1910 3744 3751
30%+70% 437 | 579 707 | 894 1055 1155 1493 [716200| 3242 | 3253
0% +60% 290 | 455 500 | 753 742 971 1131 | 1345 2722 | 2730

Average V% +50% 179 371 316 | 618 474 7.98 786 1094 2217 | 2214
60% +40%  1.20 272 210 | 496 317 6.19 511 850 1715  17.20
70% +30% 048 1.88 0.96 3.80 170 470 289 620 1247 1253
80%+20% -007 | 124 014 257 051 3.07 097 3.99 7.86 7.94
90% +10% -013 | 063  -062 | 148  -021 176 016 | 214 373 3.92
100% +0% 070 002 037 050  -0.15 057 -0.80 | 0.64 113 1.40
Average 328 3.89 538 | 657 748 846 1053 | 1175 | 2297 | 22.99

5.2 RQ2: Effectiveness of Different selection metrics

Based on the answer of RQ1, we use the retraining process that combines the training and new data
for our remaining studies. Besides, since the accuracy on the original test set is highly maintained,
we only consider the performance on the new test set in the following RQs.

We observe that the evaluation of existing selection metrics for model retraining lacks insights
regarding the amplitude of the distribution shift. For example, MCP is evaluated by only using
one data combination (80% original test data + 20% mutated data), and DeepGini is evaluated by
only (100%) mutated data. Thus, the actual effectiveness of these metrics when facing different
data distributions is ambiguous. In this research question, we explore how different distributions of
candidate data affect the effectiveness of each metric for model enhancement. To achieve this, we
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still follow the same experimental setting as our first study. In total, for each image dataset, each
test combination has 64 (2 models X 8 operators X 4 budgets) retraining performances averaging
on 5 times repetitions. In this section, we only report the results of image datasets due that we use
natural OOD data for text datasets, whereas we can experimentally control the OOD data produced
for images. Therefore, there are only a few combinations (8) for text data, and the statistical results
are insufficient to give conclusions. We report the results of text datasets in Section 6.4 (where we
consider real-world distribution shift) by using the test accuracy improvement after retraining as
the measurement metric.

Table 7 lists the frequency of each selection metric achieving the top-1 and top-3 best test
accuracy over the 64 cases in each test combination. Note that, we also report top-3 results since
if the metric achieves top-3 best performance, it outperforms half of the metrics. Interestingly,
when the new set contains more than 70% OOD data, random selection defeats the other five,
carefully-designed metrics in most cases (20 out of 24). Moreover, in total, the frequency of random
selection being the best is almost twice as the second-best metric. For example, the random selection
obtains 90 times the top-1 best performance in the 100% OOD test set, while the second-best, CES,
only reaches 47 times. Besides, when the included OOD data are more than 70%, the two metrics
CES and DSA outperform the uncertain-based metrics, Entropy, DeepGini, and MCP. The reason is
that when the new data consists of too much OOD data, a massive amount of information related
to the new distribution has not been learned by the pre-trained model. In this case, the model needs
to learn more from a representative sample of the new data rather than from the most uncertain
data. Among all the studied metrics, random selection is the most effective because it does not bias
the selection towards specific data and, therefore, achieves better representativeness.

With the increase of ID data in the candidate set and test set, the uncertain-based metrics, Entropy,
DeepGini, and MCP, achieve better results than the other 3 metrics, CES, DSA, and random selection.
More specifically, in total, when the proportion of OOD data is between 40% and 70%, MCP performs
consistently better than all the others. On the other hand, when the test set contains more (>80%)
ID data, Entropy and DeepGini achieve the best results. This is because as a higher ratio of ID
data is part of the new distribution, the pre-trained model has already learned more from this new
distribution. The OOD data, in this case, can be seen as outliers that generate uncertainty in the
model and are, therefore, naturally selected by the uncertainty-based metrics. Hence, retraining on
these data fills the gap in model learning and achieves better performance.

Answer to RQ2: None of the selection metrics outperforms the others across all ranges of
distribution shifts. When the new set contains much more (=70%) OOD than ID data, the simple
but effective random selection defeats the others. On the contrary, when the new set contains
more ID data, the uncertain-based metrics are more effective.

5.3 RQ3: Distribution and Bias of Selected Data

Following our findings above, in this research question, we further explore another property
that may impact the effectiveness of the selection metrics: class bias of the data selected by each
metric. That is, we check if the selected data are evenly chosen from different classes, which
is done by calculating the variance of labels of selected data. For example, given a 3 classes
task, we select 100 data, if the number of selected data for each class is 30, 30, 40, the variance
is Variance(30,30,40) = 22.22, while if the label numbers are 90, 5, 5, the variance should be
Variance(90,5,5) = 1605.55. A small variance indicates a slight bias in data.

First, Figure 4 illustrates the data distribution of selected data by different metrics. Compared
with the data distribution in the candidate set (black dashed line), three metrics, CES, DSA, and
random, select ID and OOD data following almost the same distribution. On the contrary, the
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Table 7. Frequency of being the top-1and top-3 best of the 6 selection metric under different data distributions.
The best result is highlighted in gray. “Distribution” represents different distribution shifts of the candidate
set.

Distribution Entropy DeepGini MCP CES DSA Random | Entropy DeepGini MCP CES DSA Random
ID + OOD Top-1 Top-3
0% + 100% 1 0 1 19 4 39 3 4 36 60 26 63
10% + 90% 1 2 6 14 9 32 2 8 32 60 30 60
20% + 80% 0 3 7 20 8 26 5 13 36 51 30 57
30% + 70% 4 5 17 16 1 21 12 19 44 48 21 48
40% + 60% 5 9 21 11 5 13 20 32 47 35 19 39
50% + 50% 3 12 28 9 2 10 29 40 52 29 13 29
MNIST 60% + 40% 8 16 23 3 6 8 36 50 54 19 10 23
70% + 30% 7 25 23 3 4 2 54 58 54 10 9 7
80% + 20% 20 26 14 0 1 3 59 59 57 3 5 9
90% + 10% 29 26 6 0 2 1 60 59 59 0 7 7
100% + 0% 15 17 13 9 3 7 40 34 33 30 27 28
Average 8.45 12.82 1445 945 4.09 14.73 29.09 34.18 4582 3136 1791 33.64
0% + 100% 0 2 3 13 11 35 3 3 26 60 40 60
10% + 90% 0 6 14 8 35 2 3 30 60 42 55
20% + 80% 0 0 4 12 15 33 1 5 32 58 40 56
30% + 70% 1 2 8 12 16 25 6 4 41 53 35 51
40% + 60% 0 0 14 14 19 17 6 9 38 49 42 48
Fashion- 50% + 50% 1 4 16 9 20 14 14 17 39 36 36 50
MNIST 60% + 40% 6 9 23 3 16 7 21 31 43 25 40 32
70% + 30% 6 14 30 2 9 3 31 40 52 20 27 22
80% + 20% 15 16 22 3 5 3 44 42 56 13 21 16
90% + 10% 22 16 18 2 4 2 50 53 58 9 14 8
100% + 0% 16 15 9 10 9 5 35 36 37 32 26 26
Average 6.18 7.09 1391 855 12.00 16.27 19.36 22.09 41.09 37.73 33.00 38.73
0% + 100% 8 14 5 15 6 16 28 36 25 33 31 39
10% + 90% 7 15 3 10 10 19 29 39 14 37 30 43
20% + 80% 17 14 0 11 6 16 35 41 11 39 24 42
30% + 70% 15 18 1 9 4 18 38 47 17 30 20 40
40% + 60% 14 22 4 7 8 9 41 49 18 32 21 31
50% + 50% 19 24 1 4 11 5 43 50 23 21 20 35
CIFAR-10 60% + 40% 18 25 4 5 8 4 47 48 24 23 22 28
70% + 30% 24 19 7 5 5 4 48 51 34 21 16 22
80% + 20% 25 24 6 2 2 5 51 49 46 14 14 18
90% + 10% 20 27 6 4 3 4 49 54 46 16 12 15
100% + 0% 10 15 20 6 7 6 37 36 48 31 22 18
Average 16.09 19.73 518 7.09 636 9.64 40.55 45.45 28.00 27.18 21.09 29.73
0% + 100% 9 16 9 47 21 90 34 43 87 153 97 162
10% + 90% 9 17 15 38 27 86 33 50 76 157 102 158
20% + 80% 17 17 11 43 29 75 41 59 79 148 94 155
30% + 70% 20 25 26 37 21 64 56 70 102 131 76 141
40% + 60% 19 31 39 32 32 39 67 90 103 118 82 116
Total 50% + 50% 23 40 45 22 33 29 86 107 116 86 69 112
60% + 40% 32 50 50 11 30 19 104 129 121 67 72 83
70% + 30% 37 58 60 10 18 9 133 149 140 51 52 51
80% + 20% 60 66 42 5 8 11 154 150 159 30 40 43
90% + 10% 71 69 30 6 9 7 159 166 163 25 33 30
100% + 0% 41 47 42 25 19 18 112 106 118 93 75 72
Average 30.73 39.64 33.55 25.09 22.45 40.64 94.5 107.6 117.7  90.6  69.5 96.1

uncertain-based metrics, Entropy, DeepGini, and MCP, tend to pick more OOD than ID data. The
reason is that the uncertain-based metrics always choose the most informative data, and the OOD
data have likely not been learned by the pre-trained DNNs. Thus, there is more chance for OOD
data to be selected by these uncertain-based metrics.

Second, Table 8 shows the class bias presented by the variance of labels of selected data. Compared
with the other selection metrics, random always selects data evenly from different classes. However,
the variances of two uncertainty-based metrics, Entropy and DeepGini, are more than twice the
others. Although MCP is designed to select data evenly from different boundary areas, this metric
has a higher bias than CES and random selection. The reason for Entropy, DeepGini, and MCP
selecting bias classes is that they all use the predicted probability to measure the uncertainty, which
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Fig. 4. Comparison of data distributions of the selected set by different metrics. Baseline: The selected set
has the same data distribution (same percentage of OOD and ID data) as the candidate set.

is highly affected by the accuracy of the pre-trained model on the new data. When there are more
OOD data, the prediction is more unreliable. For instance, MCP tends to decrease the bias in data
when the proportion of ID data is above 50%.

Table 8. Class bias (label variance) of selected data by different metrics. The best result is highlighted in gray.
“Distribution” represents different distribution shifts of the candidate set. The number means the average
(over all selection metrics) variance in the number of examples that the metric selects for each class.

Distribution
ID+0O0D
0% + 100% 479.42 429.86 361.13 213.13 279.09 188.75
10% + 90% 444.59 395.74 280.83 211.27 267.65 184.97

Entropy DeepGini MCP CES DSA Random

20% + 80% 423.30 377.19 270.06 210.26 263.01 182.18
30% + 70% 408.98 365.81 262.70  208.08 258.92 186.39
40% + 60% 387.65 350.30 250.64 207.57 256.99 181.09
50% + 50% 370.65 338.58 240.68 208.34 255.24 178.84

60% + 40% 350.82 324.47 233.23 209.83 255.07 177.36
70% + 30% 326.56 309.37 224.24 208.23 257.25 177.05
80% + 20% 307.41 299.57 218.07 207.98 261.64 178.10
90% + 10% 299.48 300.55 211.54 209.48 265.95 177.30
100% + 0% 392.50 385.06 216.62 213.89 268.97 177.93
Average 381.03 352.41 251.80 209.83 262.71 180.91

Considering the results of RQ2, we conjecture that, when there are more OOD (e.g., >70%) data
in the candidate set, it is better to select data with a better class balance to retrain the model. As an
illustration of this hypothesis, random selection and CES achieve both higher accuracy and class
balance. Since in the candidate set, most of the data have not been learned by the model, a better
class balance can help represent a more diverse distribution and, in turn, lead the model to learn
more diverse information.
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Answer to RQ3: Uncertain-based selection metrics (Entropy, DeepGini, and MCP) tend to
select more OOD data, and in a way that creates class imbalance in the set of retraining
data. On the contrary, CES and random select data with more balanced classes and better
representativeness of the new distribution. These two factors contribute to the difference in
the effectiveness of the selection metrics, depending on how much ID data are still part of the
new distribution.

6 DISTRIBUTION-AWARE TEST SELECTION

According to the findings of our empirical study, when the new data contain more (>60%) ID than
OOD data, the uncertain-based metrics outperform others in enhancing the performance of DNNs.
However, when there are more (>70%) OOD data, none of the existing metrics (Entropy, DeepGini,
MCP, CES, and DSA) defeats the random selection. There is, therefore, room for proposing a new
metric to deal with the second case in a better way than random. Intuition: since different selection
metrics behave differently on different data distributions, we should consider different selection
strategies for different distributions of data. From the in-distribution data, we need to select the
uncertain ones while for the out-of-distribution data, we should consider the data representativity.
Given our previous findings, the guiding principles of our new metric are twofold: 1) it must
consider how much the data distribution has changed (by using OOD detector) and 2) it should
preserve the balance between classes (by comparing the label balance between the selected data
and the whole data). Based on these two principles, we propose a distribution-aware test selection
metric named DAT.

6.1 OOD detector

Before looking into DAT, we introduce an OOD detection approach employed in our metric. The
outlier exposure (OE) detector [14] is currently the best OOD detection method as assessed in a
recent empirical study [1]. Given a distribution D;,, the detector aims at identifying if a sample is
derived from D;;, or not. The main idea is to separately train a DNN which additionally optimizes
the loss on OOD data. In real applications, the distribution D,,; is unknown and difficult to be
inferred precisely. Therefore, in practice, the OOD data (OE dataset, following D9E) fed into the

detector can be the same as or disjoint from the test OOD data. Given a DNN f that learned the
distribution D;, and an OE dataset, the objective of the OOD detector is to minimize:

Exay | £ (f (),9) 0.5 E_por [ Log (f (x')] 3)

where L is the loss function of f. The OE loss function Log is set as the cross-entropy from f (x”)
to the uniform distribution. Particularly, although learning from DZE, the OOD detector has been
proved [1, 14] to generalize well to D,,;. Our experimental results in Table 3 (Section4.4) also
confirms this conclusion.

Concretely, given a pre-trained model f and its training set X'* ~ D;,, first, we prepare the
ID data and OOD data to train the OOD detector. For image datasets, we use all the 8 considered
image mutation operators to mutate the training set and generate 8 mutated sets. Then, we evenly
select % data from each mutated set and combine them as the OOD training set X°“/ ~ D9E.
For the text datasets, we split the data from the OOD set as X°%! directly. Note that, the OOD data
we select for training the OOD detector are not from the candidate set and test data. Next, an OE
model is trained using both X** and X°% according to Equation 3. This model predicts an OE score
(probability) of a test being OOD. Finally, we train a regression classifier based on the OE scores of
data in X" and X°* predicted by the OE model. All the OOD detectors in this paper are available
on our project site.!
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Figure 5 shows the distribution of OE scores of three image candidate sets, MNIST, Fashion-
MNIST, and CIFAR-10. For the description of candidate sets, please refer to Section 4. The blue and
orange histograms represent the distributions of the ID and OOD data, respectively. For MNIST and
Fashion-MNIST the OOD detector can recognize and separate the ID and OOD data clearly, and
the performance on CIFAR-10 is also acceptable. Besides, we calculate the AUC-ROC score of our
OOD detectors. The area under the curve of receiver characteristic operator (AUC-ROC) provides
an overall evaluation of the ability of the OOD detector to distinguish between OOD and ID data.
A high AUC-ROC indicates good performance. For MNIST, the AUC-ROC scores are 87.74% and
92.69% of LeNet-1 and LeNet-5, respectively. For Fashion-MNIST, the scores are 88.62% and 90.81%
of LeNet-1 and LeNet-5, respectively. For CIFAR-10, the scores are 74.52 and 74.36 of ResNet-20
and NiN, respectively.

4000 == D 3000 D B D
== 00D = oop % =3 oop
3000 400
2000
2000 300
1000 200
1000
100
0 0 0
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
(a) MNIST, LeNet-5 (b) Fashion-MNIST, LeNet-5 (c) CIFAR-10, ResNet-20

Fig. 5. Histograms of OE scores of image candidate sets.

6.2 DAT Algorithm

In Algorithm 1, we present our proposed DAT selection metric.
Basically, DAT includes five steps to select data:

(1) Given a candidate set X, we first utilize the OOD detector, OODpeyecror, to divide this dataset
into ID and OOD sets, Xéd and X2¥ (line 1). If the OOD score given by the OODpetector is
greater than (less than or equal to) §, we say the input sample is OOD (ID) data. By default,
we set d to 0.5, however, the appropriate value depends on the used detector (we discuss this
in more details later).

(2) From the results of CES, DSA, and random selection in Table 7 and Figure 4, we know that
the selected set, X;, from X, should follow a similar data distribution. Thus, we determine
the labeling budgets, n' and n°*, for the ID and OOD data in X, by the proportion of ID
data in X, (lines 2-7). Note that, in practice, we select slightly more OOD data like all the
selection metrics do because OOD data are more informative for a pre-trained DNN. Here,
we use a predefined threshold § to limit the amount of ID data used for retraining.

(3) We first select the ID data. According to our study, we try to select more uncertain data from
ID set. As the result shown in Table 7 suggest, DeepGini is appropriate for this because it
achieves the highest average top-1 performance among the uncertain-based metrics when
the OOD data are below 70%. Thus, we apply DeepGini to select the most uncertain data,
X', from X (line 8).

(4) To select the OOD data, we consider the class bias as suggested by RQ3. Using the test data,
X}, as a reference, we select OOD data within several iterations. In detail, first, we create the
histogram, LDy, of the predicted labels, Y;, of X; by the pre-trained DNN model f (lines 9-10).
In each iteration, a set of OOD data, X°*, are randomly selected from Xg“’ (line 13). Based
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Algorithm 1: DAT: Distribution-Aware Test Selection

Input :0O0Dpeector: out of distribution detector
f,Xt,Xc : DNN, test set, candidate set
uncertainSelect : uncertainty-based selection metric
d: threshold to limit the size of selected ID data
n: size of labeling budget
ite: number of iterations

Output :X;: selected data

/* Stepl: Check data distribution of X, */
1 X" X04! = OF_Detector(X, 8)
/* Step2: Determine data distribution of X */
o 1X
2 if e > § then
3 ‘ n"=46xn
4 else
in _ |X(£n|
5 ‘ n'" = § x ]
6 end
7 nout —n-— nin
/* Step3: Select ID data */
8 X'™ = uncertainSelect (X}, n'")
/* Step4: Select 00D data */
9 Yy =f(Xp)
10 LD; = histogram (Y;) ; // Histogram of labels

11 dpin =

12 fori=0 — ite do

13 X024 = randomSelect (XZ"!, no4)
14 LD, = histogram (Y;)

15 if |[LDy — LDy| < dpin then

16 xout — xout
*
17 dmin = |LDt - LDrl
18 end
19 end
/* Step5: Output selected data */

20 X = X4 U xout
21 return X°

on the distance of histograms between the selected and test sets, X°“’ is updated to be more
balanced (lines 11-20).
(5) Output the combination of the selected ID and OOD data (lines 21-22).

6.3 RQ4: Effectiveness of DAT on Synthetic Distribution Shift

To evaluate the effectiveness of DAT, we conduct a similar comparison as RQ2. First, we consider the
synthetic distribution shift. An important component in DAT is the OOD detector which determines
the threshold § to control the size of selected ID and OOD data. Generally, § is set to 0.5, which
means the data sample is OOD (ID) if the detector score of this sample is greater (smaller) than 0.5.
However, we experimentally found out that it might be better to set a smaller § in order to reduce
the number of selected ID data. This is because the OOD detector may not be able to perfectly
separate ID data from OOD data. In our experiments, we set § as 0.01, 0.1, and 0.3 for MNIST,
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Table 9. Effectiveness of DAT: Comparison of frequency of being the top-1 and top-3 best of 7 selection
metrics. The best result is highlighted in gray. “Distribution” represents different distribution shifts of the
candidate set.

Distribution Entropy DeepGini MCP CES DSA Random DAT | Entropy DeepGini MCP CES DSA Random DAT

ID + OOD Top-1 Top-3
0% + 100% 1 0 0 15 3 22 23 2 1 15 48 11 55 60
10% + 90% 0 0 2 6 1 20 35 2 5 10 46 15 56 58
20% + 80% 0 2 6 10 3 9 34 2 9 17 39 16 46 63
30% + 70% 3 4 10 5 0 10 32 9 12 30 39 11 36 55
40% + 60% 3 4 18 10 5 12 12 16 28 33 33 17 34 31
MNIST 50% + 50% 3 6 26 7 2 8 12 ?0 31 44 25 11 '26 35
60% + 40% 6 8 20 3 5 7 15 28 40 43 18 10 20 33
70% + 30% 6 12 20 3 4 2 17 50 50 46 7 8 6 25
80% + 20% 18 12 11 0 1 3 19 55 51 50 3 4 8 21
90% + 10% 25 16 5 0 2 1 15 56 49 50 0 7 7 23
100% + 0% 13 7 10 7 3 5 19 30 28 29 26 26 25 28
Average 7.09 6.45 11.64 6.00 2.64 9.00 21.18 24.55 27.64 3336 25.82 1236 29.00 39.27
0% + 100% 0 1 3 10 8 16 26 1 3 7 45 30 52 54
10% + 90% 1 0 4 8 8 15 28 1 0 11 40 31 50 59
20% + 80% 0 0 3 6 8 15 32 1 2 11 35 33 52 58
30% + 70% 0 2 4 7 8 12 31 4 2 20 38 28 46 54
40% + 60% 0 0 10 11 6 14 23 3 5 29 40 33 31 51
Fashion- 50% + 50% 0 2 10 4 5 10 33 5 9 31 40 25 31 51
MNIST 60% + 40% 5 7 18 2 1 7 24 14 25 38 20 18 31 46
70% + 30% 6 12 20 1 1 5 19 26 34 47 17 11 21 36
80% + 20% 13 15 16 2 0 1 17 40 37 45 12 11 19 28
90% + 10% 21 14 16 1 1 2 9 49 53 52 6 7 12 13
100% + 0% 4 7 4 3 2 5 39 31 32 29 18 23 13 46
Average 4.55 5.45 9.82 7.45 4.27 6.91 25.55 15.91 18.36 29.09 32.09 26.00 25.45 45.09
0% + 100% 5 11 4 9 5 13 17 26 29 21 30 19 29 38
10% + 90% 6 15 3 8 7 6 19 22 34 12 35 19 30 40
20% + 80% 15 14 0 7 4 4 20 33 35 10 30 18 26 40
30% + 70% 15 15 1 3 4 10 16 35 37 10 22 15 32 41
40% + 60% 11 13 4 7 6 7 16 36 40 15 32 20 21 28
50% + 50% 16 16 1 4 10 4 13 37 44 21 19 19 26 26
CIFAR-10 60% + 40% 15 17 4 5 7 4 12 40 38 22 23 21 22 26
70% + 30% 22 9 6 5 4 4 14 38 45 30 17 15 20 27
80% + 20% 24 16 5 2 2 5 10 44 47 40 12 12 16 21
90% + 10% 17 18 5 3 3 4 14 45 48 40 14 10 10 25
100% + 0% 9 9 18 6 7 4 11 32 32 45 26 17 15 25
Average 14.09 13.91 464 536 536 591 14.73 35.27 39.00 24.18 23.64 16.82 22.45 30.64
0% + 100% 6 12 7 51 34 16 66 29 33 43 136 123 60 152
10% + 90% 7 15 9 41 22 16 82 25 39 33 136 121 65 157
20% + 80% 15 16 9 28 23 15 86 36 46 38 124 104 67 161
30% + 70% 18 21 15 32 15 12 79 48 51 60 114 99 54 150
40% + 60% 14 17 32 30 23 25 51 55 73 77 95 98 68 110
Total 50% + 50% 19 24 37 16 16 22 58 62 84 96 92 69 61 112
60% + 40% 26 32 42 13 9 19 51 82 103 103 62 59 62 105
70% + 30% 34 33 46 7 9 13 50 114 129 123 43 35 44 88
80% + 20% 55 43 32 10 2 4 46 139 135 135 36 26 35 70
90% + 10% 63 48 26 6 4 7 38 150 150 142 23 21 29 61
100% + 0% 26 23 32 12 15 15 69 93 92 103 58 75 56 99
Average 25.73 25.82 26.09 2236 15.64 14.91 61.45 75.73 85.00 86.64 83.55 75.45 54.64 115.00

Fashion-MNIST, and CIFAR-10, respectively. Besides, we set the iteration number as 1000 for all
datasets. For the backbone uncertainty metric that DAT uses to select ID data, we choose DeepGini
as discussed before.

Table 9 lists the frequency of each selection metric achieving the top-1 and top-3 accuracy
improvement over 64 and 192 cases, respectively. On average, DAT is the best metric regardless
of the distribution shift and dataset. For example, in the case of “Top-1”, DAT is 5 and 2 times
better than the worst (Random) and the second-best (MCP), respectively. In the case of “Top-3”,
although the gap between metrics becomes smaller, DAT still achieves nearly 24% better than the
second-best (MCP). Particularly, DAT always outperforms the others when there are more than 70%
OOD data. In the other distribution ratios, there is no unique winner while DAT remains generally
competitive.
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Besides, to check whether it is important and useful to consider the data distribution in DAT,
we conduct an ablation study. Elaborately, we remove the distribution detection steps (step 1-3) in
Algorithm 1 and only use the fourth step to select all the candidate data. In this way, DAT ignores
the data distribution. Table 10 provides the results of our ablation study. Compared with taking
into consideration the data distribution (Table 9), the performance drops a lot (presented by the
numbers in brackets). On average, the frequencies of being the best top-1 and top-3 have reduced
by 12.09 and 11, respectively. This ablation study demonstrates that considering data distribution is
critical for DAT.

Answer to RQ4: On the synthetic distribution shift, when there are more OOD data in the new
coming set (OOD data > % 70), DAT outperforms other compared metrics in all our considered
datasets. In lower ratios of OOD, DAT is not always the best metric but it remains competitive
overall. Besides, our ablation study demonstrates the importance of taking into account the
data distribution when selecting data.

6.4 RQ5: Effectiveness on Natural Distribution Shift

IIn addition to testing on synthetic distribution shifts, we further evaluate DAT on natural distribu-
tion shifts. In our study, we consider 3 datasets, iWildCam, IMDb, and Newsgroups.

Datasets iWildCam is from a recently released benchmark with real-world distribution shifts,
WILDs[17]. The shift of iWildCam comes from camera traps. Concretely, researchers collect data
using specific camera traps, then use these data to train an ML model for animal recognition. How-
ever, when users deploy this model in the wild, the change of camera traps may cause distribution
shifts and harm the performance of the model. In total, iWildCam contains 129809 training data (ID),
14961 OOD validation data, 7314 ID validation data, and 42791 OOD test data. The data are divided
into 182 different categories. Please refer to 4.2 for details of IMDb and Newsgroups.

Setup For iWildCam, we use all the training data to train a ResNet-50 model as our pre-trained
model. We chose ResNet-50 because it is the recommended model architecture by the WILDs
benchmark. Then, we randomly split the test data (all of which are OOD) into three parts, one
(20000 data) for training the OOD detector with the ID training data, one (10000 data) as the
candidate set for selection, and the rest (12791 data) as the test data. Besides, we follow the similar
setup in [18], which reduces the number of training data to check the performance of each metric
on the model that has a bad performance, to train models with a small number of training data.
In this way, we can check the effectiveness of each metric on both the well-trained model and
the model trained by limited labeled data. Thus, we train the other two models using randomly
selected 1000 and 2000 training data for our evaluation. For IMDb and Newsgroups, we follow the
same procedure as iWildCam to split the OOD data into the training data for the OOD detector, the
candidate set for selecting, and the test set for evaluation, respectively. After the preparation, we
employ different selection metrics to select the candidate data and retrain the pre-trained models.
Finally, we record the test accuracy improvement on the test data before and after retraining. This
setting is the same as the (0% + 100%) distribution combination in the previous RQs. The AUC-
ROC scores of the OOD detectors we trained for this RQ are 79.77%, 68.87%, 70.44%, 82.09%, and
77.37% for iWildCam-ResNet50, IMDb-LSTM, IMDb-GRU, Newsgroups-NN, and Newsgroups-NN2,
respectively. We set the ¢ in Algorithm 1 for iWildCam, IMDb, and Newsgroups as 0.5, 0.5, and 0.1,
respectively.

Results Figure 6 depicts the accuracy improvement on the test data by using each metric to
select (3%, 5% , and 10%) of candidate data for model retraining. Mention that, since both DSA
and CES cause out of memory problems, we can not run these two metrics on iWildCam dataset.
In the figure, Model-fully, Model-1000, Model-2000 represents the model that pre-trained by all
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Table 10. Ablation study of DAT which shows the importance of considering the data distribution.
“Distribution” represents different distribution shifts of the candidate set. “lmprovement drop” presents
the drop of accuracy (%) improvement of DAT without the OOD detector compared with using the OOD
detector when selecting data. Baseline: Please refer to Table 4 for the accuracy of pre-trained DNNs.

Distribution DAT with the OOD detector | DAT without the OOD detector | Improvement drop ‘
ID + OOD  Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

0% + 100% 23 60 19 57 4 3
10% + 90% 35 58 24 56 11 2

20% + 80% 34 63 25 57 9 6
30% + 70% 32 55 25 50 7 5
40% + 60% 12 31 8 28 4 3
50% + 50% 12 35 10 33 2 2
MNIST 60% + 40% 15 33 14 30 1 3
70% + 30% 17 25 14 25 3 0
80% + 20% 19 21 17 20 2 1
90% + 10% 15 23 14 22 1 1
100% + 0% 19 28 16 26 3 2

Average 21.18 39.27 16.91 36.73 4.27 2.55
0% + 100% 26 54 20 51 6 3

10% + 90% 28 59 22 55 6 4
20% + 80% 32 58 30 53 2 5

30% + 70% 31 54 31 54 0 0
40% + 60% 23 51 17 49 6 2

Fashion- 50% + 50% 33 51 25 47 8 4
MNIST 60% + 40% 24 46 20 45 4 1
70% + 30% 19 36 18 30 1 6
80% + 20% 17 28 13 25 4 3
90% + 10% 9 13 7 10 2 3
100% + 0% 39 46 26 38 13 8

Average 25.55 45.09 20.82 41.55 4.73 3.55
0% + 100% 17 38 16 30 1 8
10% + 90% 19 40 12 33 7 7
20% + 80% 20 40 16 33 4 7

30% + 70% 16 41 11 31 5 10

40% + 60% 16 28 11 24 5 4
50% + 50% 13 26 9 21 4 5

CIFAR-10 0. + 407, 12 26 10 22 2 4
70% + 30% 14 27 12 24 2 3
80% + 20% 10 21 10 20 0 1
90% + 10% 14 25 12 23 2 2
100% + 0% 11 25 9 22 2 3

Average 14.73 30.64 11.64 25.73 3.09 491

0% + 100% 66 152 55 138 11 14

10% + 90% 82 157 58 144 24 13

20% + 80% 86 161 71 143 15 18

30% + 70% 79 150 67 135 12 15

40% + 60% 51 110 36 101 15 9

Total 50% + 50% 58 112 44 101 14 11
60% + 40% 51 105 44 97 7 8

70% + 30% 50 88 44 79 6 9
80% + 20% 46 70 40 65 6 5

90% + 10% 38 61 33 55 5 6

100% + 0% 69 99 51 86 18 13

Average 61.45 115.00 49.36 104.00 12.09 11.00
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training data, 1000 training data, and 2000 training data, respectively. And the test accuracy of
each model on the test data before retraining is 70.85%, 32.94%, and 35.53% respectively. From the
results, we can see that, DAT outperforms the other metrics in all cases. Specifically, on average,
DAT can improve test accuracy by 9.25%, 8.60%, 8.65%, and 1.61% more than Entropy, DeepGini,
MCP, and Random. When the model is well-trained (using all the training data), in addition to DAT,
DeepGini is also a promising metric. However, when the model is trained by limited training data,
DeepGini, Entropy, and MCP perform much worse than random selection and DAT. Compared
with the random selection, in addition to the higher test accuracy improvement, DAT is also more
stable, and the standard deviation of DAT (0.83) is 47% lower than the Random selection (1.56).
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Fig. 6. Box plot of the accuracy improvement of different selection metrics on the dataset iWildCam, DNN
ResNet-50. The pre-trained models are learned by using the entire training set (first row), 1000 data (second
row), and 2000 data (third row), respectively. The budgets for retraining are 3% (first column), 5% (second
column), and 10% (third column), respectively.

Figure 7 shows the results of IMDb and Newsgroups. In most cases (10 out of 12), DAT outperforms
the other metrics. On average, for IMDb, DAT can improve the test accuracy by 0.42%, 0.55%, 0.51%,
1.07%, 2.66%, and 0.44% more than Entropy, DeepGini, MCP, Random, CES, and DSA, respectively.
The test accuracy improvement seems to be insignificant. We checked the models retrained using
all the new data, and the test accuracy improvement is less than 3%. One possible reason is that
the natural OOD data for IMDDb is similar to the ID data. For Newsgroup, DAT improves the test
accuracy by 9.85%, 11.12%, 9.46%, 4.75%, 30.10%, and 8.77% more than Entropy, DeepGini, MCP,
Random, CES, and DSA, respectively. Additionally, in this dataset, the Random selection defeats
the other metrics except for DAT, which is consistent with our conclusion in RQ2.
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Fig. 7. Box plot of the accuracy improvement of different selection metrics on the dataset IMDb and News-

groups.

Answer to RQ5: In the three datasets with real-world distribution shift, DAT outperforms
existing selection metrics by up to 30.10% test accuracy improvement after retraining.

7 DISCUSSION

Based on our study, we first highlight our novel findings and research guidance, then discuss the
threats to the validity of our work.

7.1

Novel Findings and Research Guidance

(1) Retraining process. Both retraining strategies for model enhancement, 1) only using the
selected new data and 2) merging the new data with training data to process retraining, are
commonly used in the literature. According to our comprehensive comparison (RQ1), the
second process works better. Indeed, only using the new data can improve the accuracy on
the new test data, however, the accuracy on the original test set is greatly sacrificed, especially
when the new data include more OOD than ID data. By contrast, combining the original
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training data and new data to retrain a DNN can enhance the performance on the new data,
meanwhile, maintaining the high accuracy on the original test set.

Research Guidance: Based on our experimental results, retraining DNNs by adding new
data to the original training set is a better option. There is still room for improving this process.
For example, how much original training data is really necessary? Can we reduce the size of
the original data to achieve better efficiency? Instead of only selecting new data, proposing a
metric to carefully select both the original training data and new data for retraining might be
a promising research direction.

(2) Test selection under different data distributions. Our experiments have demonstrated

that none of the existing selection metrics (Entropy, DeepGini, MCP, CES, DSA, and Random)
can always outperform others under different data distributions. Most of them, Entropy,
DeepGini, and MCP, can select useful data for model retraining when the new data contains
mostly the ID data. However, for the contrary case where OOD data occupy more in the new
data, they fail to win against the random selection. To deal with this specific case, we propose
the distribution-aware metric, DAT, and it has been proved to be effective.

Research Guidance: For model retraining, in the case of more ID data existing in the new
data, uncertain-based metrics are better options, while when OOD data are more than ID, our
metric DAT can alleviate the influence of distribution shifts and outperform other metrics.
Before choosing a metric, the distribution of ID and OOD data should be firstly checked by
some methods, e.g., OOD detector. However, it is still challenging to develop an almighty
metric that can deal with all the data distributions. A promising solution could be considering
multiple existing metrics strategically in the retraining process based on the distribution of
new data.

(3) Data distribution and bias of selected data. In terms of data distribution, since OOD

data are more likely than ID data to be unlearned by pre-trained DNNs, the uncertain-based
selection metrics, Entropy, DeepGini, and MCP, choose more OOD data for retraining under
all the different distributions. While CES, DSA, and random selection can follow almost the
same data distribution of the candidate data to pick data. On the other hand, concerning
the class bias of the selected data, CES and random selection seem to make a good balance
among different classes. However, there is no clear clue to show that using more OOD or
balanced data is more helpful in model enhancement.

Research Guidance: Concerning the importance of data distribution and class bias, it could
be promising to further improve the effectiveness of uncertainty-based metrics (Entropy,
DeepGini, and MCP) by considering these two factors. Besides, we observe that most selected
data by the uncertainty-based metrics are misclassified by pre-trained DNNs. Thus, the
prediction accuracy of the selected data might be another factor that impacts the retraining
performance.

7.2 Threats to Validity

The external threat to validity mainly comes from the DNN models and datasets used in our study.
Regarding the datasets, we consider 6 commonly used and public datasets in the literature. To
reduce the threat from the DNN models we employ two well-known architectures for each dataset
(except iWildCam, in which we use the state-of-the-art model recommended by WILDs benchmark)
to limit the impact of model dependency to some extent. Our datasets include both image and text
data, and our models cover both FNN and RNN.

The internal threat could be caused by the implementation of DAT and the selection metrics
in comparison. To counter this issue, we borrow the available implementations of the compared
methods from released codes by their authors, and carefully check our code.
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The construct threat lies in the OOD detector in DAT, the hyperparameter setting, and the
randomness in the training process. Following the guidance of a comprehensive empirical study
[1], we incorporate the current-best OOD detector into our new metric. Besides, we utilize their
implementation and recommend settings to train our OOD detectors. We believe that with a better
OOD detector, our method will achieve better results as well. For the hyperparameter, § is important
since it determines how to consider data as ID or OOD. It also limits the ratio of ID data selected
for retraining. By default, we set § to 0.5, that is, up to 50% of the selected data can come from the
original distribution. This default ratio worked well for real-world datasets (WILDS and IMDB). For
the other datasets, we experimentally found out that setting a lower § increases the effectiveness of
retraining with DAT. Ultimately, at the cost of additional labeling, we can improve the effectiveness
of DAT through the setting of a better § value. In practical applications, this opens the perspective
to determine better § values from past distribution shifts. Regarding the randomness, we repeat
each experiment 5 times and we retrained more than 71280 models.

8 RELATED WORK

We review related works in three aspects, test selection in deep learning systems, distribution-aware
deep learning testing, and empirical study for deep learning systems.

Test selection in deep learning systems. In the literature, many selection metrics have been
proposed to reduce the labeling effort. Based on the similarity between the training set and test
data, Kim et al. proposed the surprise-guided testing metrics for model retraining. DeepGini [8]
was proposed to prioritize the test data and select the most informative data that are more likely
to be misclassified by the model. Its authors have also demonstrated that DeepGini is useful to
guide the model retraining. MCP [38] is another uncertainty-based selection metric. It selects data
close to the decision boundaries by the top-2 predicted probabilities. Wang et al. [47] proposed
robustness-oriented testing metrics as well as selection metrics. However, their objective is the
adversarial robustness of DNNs, which is different from our study. Thus, those metrics are not
considered in our paper. Wang et al. [48] proposed a new selection metric which uses image
mutation and DNN model mutation to select data that are likely to be misclassified by the model
for revealing DNN bugs. Recently, Guo et al. [12] proposed a novel active learning approach that
can train a more robust model. Meanwhile, they demonstrated that this approach can be used for
test selection-based model enhancement.

In our work, we studied all the selection metrics that are proposed for selecting data and
enhancing the model. We also propose a novel selection metric (DAT). Different from existing
metrics, DAT is the first one to consider the data distribution in test selection.

Distribution-aware deep learning testing. Recently, researchers have revealed that data
distribution might impact deep learning testing, especially in the scenario of test generation. David
et al. [1] conducted a comprehensive empirical study to explore the relationship between deep
learning testing criteria and data distribution. Besides, they provided some research guidance, e.g.,
deep learning testing tools should be aware of distribution. Different from their study, our work
mainly focuses on how distribution affects test selection.

Swaroopa et al. [6] proposed a distribution-aware test generation method that is based on
variational auto-encoder (VAE). They first studied the validity of the data generated by existing
test generation methods (e.g., DeepXplore), then proposed the test generation method to check if
the generated data are valid or not at the generation time. Different from their work, we focus on
how to select data with the distribution information rather than generating test data.

Empirical study for deep learning systems. Since the DL systems are continuously adopted
in many SE applications, e.g., DL for code function prediction. SE researchers pay more attention
to study DL systems, and a few empirical studies have been conducted. Ma et al. [27] performed
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a comparison study on different selection metrics for testing DL systems. They revealed that the
neuron coverage-based selection metrics cannot achieve competitive results, and more efficient
metrics are on demand. Guo et al. [11] studied the performance difference between different DL
frameworks as well as the model changes after model migration. Zhang et al. [54] conducted a
comparative study to explore how different uncertainty metrics distinguish adversarial examples
from benign examples. Hu et al. [15] empirically explored the limitations of active learning, which
is a commonly used training process for both SE and ML tasks. And a series of works [4, 53] have
been performed to study the challenges in deploying DL systems.

Compared with the existing empirical study works, our study investigates the potential problems
in test selection for model enhancement that is missing in the literature.

9 CONCLUSION

In this paper, we first conducted a systemically empirical study to explore how different retraining
processes and data distributions impact the test selection for model enhancement. In total, based
on 6 selection metrics in comparison, we retrained 71280 models over 5 popular datasets and 10
DNN models for our empirical study. In terms of enhancing the performance on new data under
various distributions and meanwhile maintaining the high accuracy on the original test set, our
experimental results reveal that using the combination of training and selected data is better than
only using the selected data. Besides, none of the existing selection metrics can always outperform
the others across all data distributions. Interestingly, when the new set contains more (>70%) OOD
data, the simple but effective random manner defeats the others, which gives us an insight that this
special case has not been uncovered in existing metrics. Thus, based on the findings, we propose
a novel and effective distribution-aware metric, DAT, to deal with this case. The experiments
demonstrate that DAT stands out from the compared metrics by up to 5 times better for model
enhancement when deals the synthetic distribution shift. The results on the datasets with natural
distribution shifts also prove that DAT can achieve better model enhancement than the other
metrics when facing the in-the-wild scenario. Moreover, based on our findings from the 5 research
questions, we open research directions for further improving the performance of existing metrics
as well as proposing new selection metrics.
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