
IntJect: Vulnerability Intent Bug Seeding

Benjamin Petit1,2, Ahmed Khanfir2, Ezekiel Soremekun2, Gilles Perrouin1, and Mike Papadakis2
1University of Namur, Namur, Belgium

2University of Luxembourg, Luxembourg, Luxembourg
petitbenj@gmail.com, ahmed.khanfir@uni.lu, ezekiel.soremekun@uni.lu,

gilles.perrouin@unamur.be, mike.papadakis@gmail.com

Abstract—Studying and exposing software vulnerabilities is
important to ensure software security, safety, and reliability. Soft-
ware engineers often inject vulnerabilities into their programs to
test the reliability of their test suites, vulnerability detectors, and
security measures. However, state-of-the-art vulnerability injec-
tion methods only capture code syntax/patterns, they do not learn
the intent of the vulnerability and are limited to the syntax of the
original dataset. To address this challenge, we propose the first
intent-based vulnerability injection method that learns both the
program syntax and vulnerability intent. Our approach applies a
combination of NLP methods and semantic-preserving program
mutations (at the bytecode level) to inject code vulnerabilities.
Given a dataset of known vulnerabilities (containing benign and
vulnerable code pairs), our approach proceeds by employing
semantic-preserving program mutations to transform the existing
dataset to semantically similar code. Then, it learns the intent
of the vulnerability via neural machine translation (Seq2Seq)
models. The key insight is to employ Seq2Seq to learn the intent
(context) of the vulnerable code in a manner that is agnostic
of the specific program instance. We evaluate the performance
of our approach using 1275 vulnerabilities belonging to five (5)
CWEs from the Juliet test suite. We examine the effectiveness of
our approach in producing compilable and vulnerable code. Our
results show that INTJECT is effective, almost all (99%) of the
code produced by our approach is vulnerable and compilable.
We also demonstrate that the vulnerable programs generated
by INTJECT are semantically similar to the withheld original
vulnerable code. Finally, we show that our mutation-based data
transformation approach outperforms its alternatives, namely
data obfuscation and using the original data.

Index Terms—Software Vulnerabilities; Vulnerability injection;
Software Security; Software Reliability

I. INTRODUCTION

Fault seeding is a popular technique for assessing the bug-
finding capabilities of test generators [1], [2] and assessing test
suite thoroughness [3]. It is often employed to guarantee that
specific types of faults are not present in the software under
test [2], [4] and to form test requirements that can judge the
adequacy of testing [5]. The underlying idea is to seed bugs
that encode the characteristics of the targeted faults and check
the ability of bug-finding processes to uncover them.

Fault seeding usually involves syntactic changing the pro-
grams under test to inject faults that conform to the targeted
fault type. Typically, faults are seeded based on syntactic
patterns [5] that change benign code into buggy code. While
effective, such an approach usually results in trivial faults
[3] and numerous false positives, i.e., faults not belonging
to the targeted fault class. This issue has the unfortunate
effect of producing misleading test assessments or bug-finding
measurements as it obscures the computed scores. Trivial

faults result in inflated measurements [3] while false positives
result in deflated measurements and wasted resources [6].

Additionally, the design of security-aware fault injection
methods has received particularly low attention. Most previous
works aim to inject logical faults [5]. Hence, it remains
challenging to inject security-related faults for security testing
and test assessments. To deal with this issue, we propose a
vulnerability injection approach (called INTJECT) that aims
at injecting specific types of security-related bugs.

Some researchers have proposed security-related fault seed-
ing approaches such as Lava [1] and Pitest [7]. However,
these approaches are limited to few predefined patterns and
they make working assumptions that inhibit their general
purpose application and extension. For instance, Lava [1]
injects vulnerabilities by introducing guard conditions that
reflect the path conditions of a given test case. This means
that the resulting vulnerable codes are dependent on the
provided test cases and the path conditions, they do not capture
the vulnerability context or the type of the intended bugs.
Similarly, Pitest [7] injects blindly a number of supported fault
patterns/types without any consideration of the fault context.
More importantly, both approaches require significant efforts
to be applicable to other languages and vulnerability types.

This work addresses these challenges by proposing the first
intent-based vulnerability injection method (INTJECT) which
seeds specific types of security-related bugs by learning their
context from given examples. Automatically learning from
examples is an important direction of research, especially
considering the plethora of new vulnerabilities reported over
time. Thus, we propose INTJECT– a learning-based method
that effectively learns both the context of the code (e.g., where
vulnerability is to be injected) and the syntactic transformation
required to inject these vulnerabilities.

This is particularly challenging because learning-based
methods are data-hungry, they require rich and large datasets to
be effective. However, such vulnerable datasets are unavailable
or scarce in practice [8]. To deal with this issue, INTJECT
effectively learns from few examples using a combination of
NLP (natural language processing) methods and semantic-
preserving program mutations (at the bytecode level). This
combination allows to effectively learn both the vulnerability
intent (i.e. context) and the required syntactic transformation
from benign to vulnerable code.

Specifically, given a set of known vulnerabilities (containing
benign and vulnerable code pairs), INTJECT automatically
infers their patterns by repeatedly mutating the vulnerable

1 String stringNumber = readerBuffered.readLine();
2 data = Integer.parseInt(stringNumber.trim());
3 - if (data < array.length) // vulnerable code

3 + if (data >= 0 && data < array.length) // benign code

4 {
5 int a, b = 10; // sample mutation (addLocalMutation)
6 IO.writeLine(array[data]);
7 a = 15; // sample mutation (addLocalMutation)
8 }

(a) Program showing vulnerable, benign and mutated code snippets

Intent: inject CWE-129 into benign code

Syntactic Difference: Difference on line 3:
“data >= 0 &&”

Vulnerability Context: Lines 1 to 8 (N <= 100 tokens
surrounding the syntactic difference (line 3))

Semantic-preserving Mutation: Line 5 & 7
E.g., “int a, b = 10;” (addLocalMutation)

(b) Features of Vulnerable Code

Fig. 1: Motivating Example showing a program containing a vulnerability (CWE 129), and the the vulnerability context
learned by INTJECT to enable effective vulnerability injection in benign code

and clean code examples using semantic-preserving mutations.
These mutations aim to ensure that INTJECT learns the
context of the vulnerable code in a manner that is general and
applicable to other programs, other than the initial examples.

The vulnerability intent is learned through a neural machine
translation (i.e., Seq2Seq) model. The main idea is to learn the
vulnerability context (e.g., vulnerability-related variables, con-
ditions and methods). It is important to capture vulnerability
context since it allows to select tokens within a context and
reason about the vulnerable code transformation [9].

We evaluate the performance of our approach using 1,275
vulnerabilities belonging to five (5) CWEs provided by the
Juliet test suite [10]. We examine if INTJECT effectively in-
jects vulnerabilities in benign code by checking if the resulting
code is valid (compilable) and vulnerable. We then analyse
the contribution of our semantic-preserving mutations to the
effectiveness of our method. To show that our model indeed
captures the vulnerability intent, we investigate the semantic
similarity of the vulnerable code generated by INTJECT to
the original vulnerable code in the dataset. Figure 1 presents
an example of vulnerability intent learned by INTJECT.

Our results provide empirical evidence that INTJECT is
effective in generating syntactically valid yet vulnerable code,
almost all (99%) of the code produced by INTJECT is
vulnerable and compilable. Furthermore, INTJECT injects
vulnerabilities that are semantically similar to real vulnera-
ble code. This shows its utility for evaluating vulnerability-
detection tools. Finally, we observe that our mutation-based
data transformation approach contributes to the performance of
INTJECT. It outperforms the state-of-the-art data sources, i.e.,
only data obfuscation and only the original data. This result
encourages the adoption of INTJECT’s mutation technique to
augment data for similar code learning-based applications.

The rest of the paper is organized as follows: Section II
presents an overview of our approach and Section III discusses
our methodology. Section IV presents our experimental setup,
and Section V reports our results. Sections VI and VII discuss
threats to validity and related work. Finally, Section VIII
concludes the paper.

II. OVERVIEW

This section illustrates the challenges with learning-based
vulnerability injection with an example and demonstrates how
our approach (INTJECT) addresses this problem.

A. Motivating Example

Consider a program (shown in Figure 1a) containing a
well-known vulnerability (CWE-129), namely the improper
validation of an array index obtained from the program input.
To be valid, the array index must: 1) be greater than or equal
to zero and 2) be strictly less than the array length (“benign”
line 3). The absence of the first conditional check 1) creates a
vulnerability (see “vulnerable” line 3, in Figure 1a), allowing
for negative indices to be sought for in the array. This may
lead to illegal memory access and buffer underflow. Indeed, an
attacker can exploit this vulnerability to craft memory-related
attacks, e.g., resource leakage (see CWE-839).

B. Intent of Vulnerability Injection

Given a pair of benign and vulnerable code samples (e.g.,
Figure 1a), the goal of vulnerability injection is to successfully
seed the vulnerability captured in the vulnerable code into an
unseen benign code. We posit that to successfully inject such
a vulnerability into an arbitrary benign code, it is important to
learn the intent of the vulnerability. This intent is composed of
the program syntax and the vulnerability context, i.e., the code
(e.g., variables and methods) surrounding the vulnerability.

1) Syntactic difference: In this motivating example, the
program syntax is captured by the syntactic difference between
the benign code and vulnerable code. It is important to
learn the type of code snippets to add, delete or modify to
successfully inject a vulnerability into an arbitrary benign
code. However, this is not sufficient since inserting the learned
syntactic difference or pattern in any random if condition
does not necessarily introduce the vulnerability. Specifically, a
successful injection requires knowledge of the context of the
vulnerability, i.e., the code sequences around the vulnerable
code snippet.

2) Vulnerability Context: The vulnerability context is im-
portant to understand the code location and the conditions
under which the vulnerability is effective. For instance, in-
jecting the missing check into any other if condition in the
program does not introduce the vulnerability. It has to be an if
condition before the use of the array index, and the vulnerable
code location has to be followed by a read operation from
an external source. In our motivating example (Figure 1), the
vulnerability context refers to the code sequences surrounding
the vulnerable line(s) of code (lines one to eight). The context
size principally depends on the NLP approach used and is set
empirically (see Section IV).

C. Limitations of the State-of-the-art

In this section, we discuss the limitations of existing state-
of-the-art vulnerability injection methods.

1) Limited Syntactic Patterns: Loise et al. [7] inspect man-
ually vulnerable-benign (fixed) code pairs to derive security-
aware mutation operators. By manually analysing the Find-
Bugs [11] database, the authors created 15 mutation operators
for injecting vulnerable mutants. These operators capture the
vulnerability intents for each studied vulnerability. This work
is limited by the fact that it manually captures vulnerability
intents. Meanwhile, INTJECT automatically learns the intents.

Similarly, BUG-INJECTOR inserts vulnerabilities using pre-
defined templates [12]. Unlike mutation techniques, Bug-
injector determines the location of the injection by running
test cases of the program to be altered by bugs and matching
the execution information with templates preconditions. The
vulnerability intent is predefined rather than learnt as INT-
JECT does. In contrast, IBIR exploits bug reports to identify
source code locations to be made faulty and inverts program
repair fixes to inject faults [13]. Notably, both BUG-INJECTOR
and IBIR do not specifically target vulnerabilities.

2) Dataset Limitations: Learning-based vulnerability injec-
tion methods rely on learning vulnerability patterns from an
existing dataset. Thus, the capability of the learned model is
often limited to the program features available in the original
dataset, meaning that changes in such features in an arbitrary
program could reduce its performance. Hence, the original
dataset influences the effectiveness of the vulnerability injec-
tion model. Moreover, the low variety of syntactic features as
well as little context for the vulnerability reduces the injection
accuracy. We posit that successful vulnerability injection in
arbitrary code requires learning several vulnerability contexts
and a varying set of program contexts. Hence, it is important to
transform the original datasets with diverse program contexts
that preserve the program semantics and vulnerability intent.

To address these dataset concerns, we propose a mutation-
based data manipulation of the original dataset. Our data
manipulation approach performs semantic-preserving program
mutations on the original dataset to increase the diversity
of program features as well as the diversity of program
context surrounding the vulnerability. For instance, consider
the motivating example (Figure 1), INTJECT mutated the
original code to add a new variable initialization (in lines 5

and 7). This mutation preserves the intent of the vulnerability,
while increasing the diversity of the program context.

D. INTJECT

The goal of this work is to learn both the program syntax
and vulnerability context to enable the successful injection of
seen vulnerabilities in unseen benign code. In our motivating
example (Figure 1), INTJECT learns both the syntactic dif-
ference capturing the vulnerable statement (in line 3), and the
vulnerability context embodied by the statements around the
vulnerable code. Learning the combination of the vulnerability
context and the syntactic difference is an effective gadget to
insert vulnerabilities into arbitrary programs. Figure 2 illus-
trates how INTJECT works. It firsts transforms the original
dataset into a mutated dataset via semantic-preserving program
mutations. These mutations increase the diversity of the pro-
gram syntax and varies the context of the vulnerability while
preserving the program semantics and the vulnerability intent.
Then, our sequence to sequence (seq2seq) transformer model
learns both the program syntax and vulnerability intent. Our
evaluation shows that INTJECT is effective in vulnerability
injection because it learns both program syntax and vulnera-
bility context from a diverse set of programs (Section V).

III. METHODOLOGY

Let us describe how INTJECT creates vulnerable programs
from benign ones. INTJECT learns the vulnerability intent
and program syntax via a combination of mutation-based
data transformation and neural machine translation (NMT).
It first transforms the training data using semantic-preserving
mutations, then learns a vulnerability injection model via a
seq2seq model [9]. Figure 2 depicts INTJECT’s workflow.

In the following, we describe in detail the workflow of our
approach (INTJECT) in two main steps:
• Step 1 - Semantic-preserving Program Transformations:

Given a dataset containing pairs of benign and vulnerable
code, our approach (INTJECT) transforms the dataset via
semantic-preserving mutations. In particular, it generates
several instances of the code pairs that preserve the program
semantics and the vulnerability. To achieve this, INTJECT
applies bytecode level mutation to transform both the vul-
nerable code and the benign code into semantically similar,
but syntactically different equivalents. It first compiles each
benign/vulnerable program, then perform code transforma-
tions in the bytecode version of the program such that it
does not break the vulnerable code semantics. We perform
this step using a modified version of CONFUZZION [14]
(see Section IV-C). INTJECT then decompiles the resulting
mutated code pair into a new benign/vulnerable source code
pair. This source code has a similar behavior as the original
one, but it is syntactically different due to the mutation
and decompilation steps. INTJECT also ensures that the
transformations preserve the presence or absence of the
vulnerability in the code using INFER [15]. The resulting
mutated dataset allows our approach (INTJECT) to learn

Vulnerability

Dataset

Abstractions and
transformations

Obfuscation

Mutations Mutants  
Dataset

Obfuscated  
Dataset

Vulnerable context
abstraction

Training

Back propagation

Vulnerability

Injection

IntJect

• Tokenization &  
Token Embedding

• Training using  
Bidirectional LSTM

• Code Generator
using copy
attention

Seq2seq

Fig. 2: Our experimental workflow showing INTJECT’s phases the mutation-based program mutation of INTJECT, and
alternative data transformation approaches (i.e., obfuscated dataset and original vulnerability dataset)

the vulnerability intent under different circumstances, and
discriminate it from the program syntax.
In addition, our evaluation involved examining the contribu-
tion of our mutation-based data transformation, in compar-
ison to the state-of-the-art data transformation approaches
(see RQ2 section V). These approaches include using the
original raw dataset and using an obfuscated version of the
dataset (Figure 2). Generally, obfuscation [16] attempts to
protect code from being reverse-engineered, without modi-
fying its functionalities. Precisely, it replaces all components
given-names (like parameters, variables, etc.) by arbitrary
names, thus, making code hard to read by unwanted users
(i.e. attackers). In this work, we compare default INTJECT
(i.e., using the mutated dataset) versus using an obfuscated
dataset. Obfuscation is applied on each pair of vulnerable
and benign code to yield new obfuscated pairs. Typically,
the goal of such obfuscation-based data transformation is to
prevent the model from associating irrelevant information
with vulnerabilities and guide its learning towards their
behavioral aspects. Obfuscation in this work was performed
using the “Java Obfuscator” provided by “Semantic De-
signs” [17]. For both obfuscated and mutated pairs, we en-
sure the presence of vulnerabilities by relying on the INFER
static analyzer [15]. Overall, we generated two additional
datasets resulting from the aforementioned obfuscation and
mutation operations, respectively.

• Step 2 - Neural Machine Translation (NMT): For this
task, INTJECT starts by 1) performing vulnerable context
abstraction, then 2) it splits the input (benign-vulnerable

code pairs) into token-sequences, next 3) it feeds them
to the Seq2Seq learning architecture (using a Bidirectional
LSTM model, and global copy attention [9]) to train the
model towards injecting vulnerabilities in benign code. The
employed learning architecture uses supervised learning and
back-propagation to learn the weights for inference/predic-
tion. INTJECT training phase is based on a Sequence-to-
Sequence (Seq2Seq) transformer model architecture popu-
larly employed in learning-based language translation [18].
It employs a learning approach similar to that proposed by
Chen et al. [9] which was designed to capture fault context
for bug-fixing, i.e., automated program repair (APR). In this
work, we re-purpose this architecture for vulnerability intent
and injection, i.e., security-related fault seeding. Figure 2
shows the details of our NMT training phase. In the training
phase, we have adapted the hyper-parameters to avoid over-
fitting to the input dataset and to increase the prediction
performance of the model, particularly for unseen code (see
Sections IV-F and IV-F). After model training, the outcome
of our training step is a Seq2seq model which generates
vulnerable code snippets, and inject vulnerabilities. In the
inference mode, given a benign code, INTJECT uses the
token generator of the resulting model to generate the
vulnerable version of the benign code.

IV. EXPERIMENTAL SETUP

In this section, we discuss our research questions (RQs) and
provide details about our experimental setup.

A. Research Questions
We design and conduct experiments to evaluate the ef-

fectiveness of INTJECT (RQ1) and the contribution of our
semantic-preserving mutations (RQ2). We also investigate
the semantic similarity of the vulnerable code generated by
INTJECT to the vulnerable code in the original dataset (RQ3).
Specifically, we ask the following research questions (RQs):

• RQ1 Effectiveness: How effective is our approach
(INTJECT) in generating valid and vulnerable code?

• RQ2 Semantic-Preserving Program Mutations: What
is the contribution of our mutation-based data transfor-
mation approach to the effectiveness of INTJECT? How
does it compare to alternative datasets, i.e., using the
original dataset or an obfuscated dataset?

• RQ3 Semantic Similarity to Original Vulnerable
Code: How semantically similar are the vulnerable code
generated by INTJECT to the original vulnerable code
(from the dataset), in terms of program dependence?

B. Vulnerability Dataset (CWEs) and Oracle
1) Vulnerability Dataset: In this work, we use the Juliet

Test Suite (version 1.3) [19]. This vulnerability dataset was
created by the Center for Assured Software (CAS) of the
National Security Agency (NSA) to assess the capabilities of
static analysis tools to detect some vulnerabilities coming from
the Common Weakness Enumeration (CWE) – a collection
of known software security issues [20]. It contains well-
known security issues in software systems, including 11 of
the 2011 CWE/SANS 25 topmost dangerous software errors.
Each CWE contains “test cases” that demonstrate specific
vulnerability (or CWE). These test cases are created using
a “Test case Template Engine” tool or manually injected
into different benign source code snippets. In this paper, we
employ 1275 vulnerabilities containing five (5) CWEs from
the Juliet Dataset. We have chosen these five CWEs and the
Juliet dataset due to their high prevalence in typical software
systems and popularity in the research community, notably
in vulnerability detection [21] and vulnerability analysis [22].
Table I provides details about our vulnerability dataset. Our
dataset contains 4060 test cases, i.e., Java programs containing
at least one vulnerable method and several benign versions of
the method. In our setting, a test case refers to a Java program
from the Juliet dataset containing at least one vulnerable
method and several (two to four) benign methods. From each
test case, we obtain several pairs of vulnerable and benign
code.

2) Oracle: We used INFER [15], a static analyser developed
by Facebook, to determine the presence or absence of a vul-
nerability in a program. INFER detects security vulnerabilities
in Java or C (C++, Objective-C) programs via static program
analysis. We validate that our test oracle (INFER) works
correctly via a preliminary evaluation on the vulnerability
dataset. We test that for all code pairs in our dataset, INFER
(a) does not miss-classify a benign code as vulnerable, (b)
correctly identifies a vulnerable code snippet, and (c) detects
the specific vulnerability (CWE) in the vulnerable code.

TABLE I: Details of Experimental Datasets

CWEs Description # instances
129 Improper validation of array index 155
134 Uncontrolled format string 62
190 Integer overflow 499
191 Integer underflow 499
369 Divide by zero 60
Raw Data Original dataset 1275
Obfuscated Data Obfuscation Data Manipulation 1275
Mutated Data Mutation-based Data Manipulation 2227

C. Experimental Datasets

In our experiments, we train INTJECT on three different
datasets, namely the (1) original dataset from the Juliet dataset,
(2) an obfuscated dataset and (3) the default mutated dataset
produced by our semantic-preserving program mutations. In
the following, we describe each dataset:

1) Original Dataset: Table I provides details on the data
preparation of the original (raw) dataset. This is the original
vulnerability dataset which can be directly used for training
without any data transformation or abstraction. For this dataset,
we obtained 6991 pairs from 4060 test cases. We then filtered
for pairs with the token restriction (<=150 tokens) resulting
in 1347 instances. We also removed duplicated or identical
benign methods to finally obtain 1275 program pairs.

2) Obfuscated Dataset: In this work, we employ obfusca-
tion to abstract the code syntax while retaining the semantics.
This is to create a dataset that is more general than the
original raw data since it abstracts away syntactic sugar. We
compare the performance of our approach using the obfuscated
data to that of our semantic-preserving program mutations.
To obfuscate the original dataset, we use the tool “Java
Obfuscator” developed by “Semantic Designs” [17].

3) Mutated Datasets: In this work, we propose the use
of semantic-preserving program mutations to transform an
original dataset into a rich and diverse one that allows to
learn the vulnerability intent under varying contexts. To mutate
the original dataset, we employ CONFUZZION [14]. Basically,
CONFUZZION is a mutation-based feedback-guided black-box
JVM fuzzer, which is focused on the type confusion vulnera-
bilities detection. In our case, the interesting component of this
tool is the mutation module. CONFUZZION supports several
program mutations at the method and class level. However, for
this work, we employ only the semantic preserving mutations
at the method-level detailed in Table II. To this end, we adapt
the tool to our needs, mainly by disabling some mutation
operators, targeting the input code instead of the JVM classes,
and incorporating it to the pre-processing phase of INTJECT.
Then, we run it on our dataset, generating 50 mutants per
vulnerable code. Thus, ending up with 50 mutated vulnerable
codes for every target code pair. To generate the benign
version of the vulnerable mutated versions, we applied the
same changes (caused by the mutation) on the original benign
version. Finally, we ensure that these mutations are semantic-
preserving for each pair of vulnerable and benign code by

TABLE II: The Mutation Operators used from Confuzzion
(adapted from [14])

Category Mutation operator Description

Method AddLocalMutation adds a new local variable and
generates a corresponding object.

AssignMutation assigns an existing value
to a new variable.

CallMethodMutation adds a method call and generates
the necessary arguments.

TABLE III: Data Preparation of the mutants.

Filter / Dataset Raw Mutated
Test cases 4060 21487
Instances 6991 39464
Instances (# tokens <= 150) 1347 15007
Instances unique 1275 2227

using INFER; where we check that the vulnerability is present
in the vulnerable code and absent in the benign code.

Table III shows the details of the mutated datasets in com-
parison to the original dataset, in terms of the number of test
cases and resulting program pairs (“instances”). Our mutation-
based data transformation produced 75% more instances after
performing 50 mutations per test case. We also remove the
equivalent mutants resulting from this step.

D. Research Protocol

1) Data Preparation and Pre-processing: First, we pre-process
the original dataset from the Juliet Test Suite [19] to obtain
the pairs of vulnerable and benign code. This dataset was
analysed, filtered and prepared to obtain the code pairs
applicable for our settings. For instance, we filtered for code
instances that are no more than 150 tokens due to token
length limitations of employed learning frameworks. This
is in line with settings found in related works [9], [23].

2) Preliminary Experiments with Test Oracle: We then feed
all code pairs from our dataset to INFER for analysis to
ensure that all vulnerable code can be detected and correctly
classified. We also ensure that benign codes are not mis-
classified. In fact, we conduct all the experiments with
instances that are correctly classified by INFER. We refer
to the resulting dataset from this step as the original (raw)
dataset.

3) Data Transformations: Next, we perform the two data
transformations on the dataset, namely data obfuscation
and semantic-preserving program mutations. These trans-
formations resulted in two more datasets, which we call
respectively the obfuscated dataset and the mutated dataset.

4) Model Training: We perform a preliminary hyper-parameter
setting and tuning (reported in subsection IV-F). We then
train INTJECT on each dataset using the Seq2seq library
in OpenNMT [18] for fixing bugs – SEQUENCER [9]. We
call the resulting model INTJECT with mutated dataset,

original (raw) dataset or Obfuscated dataset. We also train
under different model configurations (i.e., 2,000, 6,000 and
10,000 model training iterations). All reported results (e.g.,
Table IV) are over a five-fold cross-validation.

5) Experimental Data Analysis: In our analysis, we assess
the performance of our approach (INTJECT) to inject
vulnerabilities into benign code snippets. In particular, using
metrics described in subsection IV-E we analyse the effec-
tiveness of INTJECT for the different datasets and model
configurations (RQ1). We also analyse the performance of
our semantic-preserving mutations (RQ2) and the semantic
similarity between the generated code by INTJECT and the
original vulnerable code (RQ3).

E. Metrics and Measures

1) Predictive Accuracy: We compute the following metrics
for all experiments, resulting INTJECT models, different
model configurations (2000, 6000 and 10000 iterations) and
datasets (original, obfuscated and mutated datasets):

• Ratio of compilable predictions: This is the proportion of
programs generated by INTJECT that are syntactically
valid code, i.e., could be compiled by the Java Compiler.

• Ratio of vulnerability inserted: This refers to the pro-
portion of programs generated by INTJECT that were
determined to be vulnerable by INFER.

2) Semantic Difference (SOOTDIFF): To determine the
semantic similarity between the vulnerable code generated
by INTJECT and the original vulnerable code, we use the
difference at the bytecode level to abstract away the syntactic
differences. To this end, we used SOOTDIFF [24], a tool
designed to identify if two bytecodes are from the same source
code. It allows to determine if the bytecode representation of
the original vulnerable code matches that of the code generated
by INTJECT. Consequently, a match of both bytecodes allows
to determine that they are semantically similar, that is, they
represent the same vulnerable program behaviour. A difference
allows to measure the degree of mismatch at the bytecode
level, which shows that even if the vulnerability is present in
both code snippets (as determined by INFER) there is a degree
of behavioral difference between both codes. We have selected
SOOTDIFF for our computations since it is more reliable
than bytecode or syntactic code clone detection. Besides, it
shows behavioral differences (e.g., differences in program
dependencies), and abstracts away syntactic differences.

3) Levenshtein Distance: We use the popular levenshtein
metric [25] as a semantic distance metric to measure the
difference reported by SOOTDIFF. To compute this, we report
the Levenshtein distance between all differing instructions
between the two code snippets, i.e., the original vulnerable
code in the dataset and the code generated by INTJECT.

F. Training Configurations & Settings

Main Hyper-parameters: We set the seed size to one (1) for all
experiments to mitigate randomness and allow to replay/com-
pare all experiments in a balanced setting. Our model training
involves two (2) encoder and decoder layers, with a Bridge

layer between the last encoder state and the first decoder
state. The models are trained using an RNN architecture, in
particular an LSTM [26]. We also employ global attention and
copy mechanisms to improve the capabilities of the model.
Preliminary Experiments: First, we conduct a preliminary
experiment to determine the hyper-parameter setting for our
approach, using 24 manipulated instances containing five (5)
CWEs from the Juliet dataset. The goal of this experiment
is to perform a parameter sweep of variables under varying
circumstances to determine stable parameter values across
board and avoid over-fitting. In this experiment, we also train
with the mutated and the obfuscated test datasets to determine
the appropriate parameters. Experimenting with these different
transformed datasets helps to ensure that the parameters are
not over-fitted to a specific dataset and the approach works.
Evaluation Metrics: For each parameter setting, we evaluate
the performance of each model by computing the accuracy
of the model based on the statistics provided in the OPEN-
NMT framework12. We compute the accuracy as follows:
Accuracy = 100 ∗ number of correct

number of words . In addition, we conduct
a manual analysis of the predictions to understand how the
model reacts to each parameter modification. This allows to
determine the stable parameter setting for our experiments.
Hyper-parameter Tuning: In a preliminary experimental
phase, we examine combinations of the following hyper-
parameters: earlystopper, GRU versus LSTM, Three versus
two layers, 100 vs. 250 vs. 500 vocabulary sizes, 16 vs. 32
vs. 64 batch sizes, 100 vs. 256 vs. 512 word vector sizes,
absence vs. presence of the bridge layer and 100, 256 and
500 RNN sizes. From this investigation, we determine the best-
performing parameter setting to be used in our experiments,
which is the following: training with an RNN of size 256
(same as in Tufano et al. approach [27]), using a batch size
of 32 and Word vec size of 256 (similarly to Sequencer [9])
and a vocabulary size of 250, which fits within the range of
sizes used by other notable NMT approaches; between 129
and 1000 vocabulary sizes [9], [28], [29]. Our model is trained
using two layers for the encoder and the decoder model, in
particular, we employ a bidirectional LSTM for the encoder
and a simple LSTM for the decoder. Our token generator also
employs attention and copy mechanisms.
Model Training and Testing: Overall, INTJECT was trained
on our mutated dataset containing 2227 instances. In addition,
we trained two models for comparison as baselines, one model
was trained on the raw dataset and a second on the obfuscated
datasets. Both the raw and obfuscated datasets contain 1275
instances each. For all trained models, we conducted a five-
fold cross-validation, with an 80%-20% train-test split.

G. Implementation Details and Platform

Our approach (INTJECT) and experimental analysis were
implemented in over 2KLoC (2281 LoC) of Python code.

1https://github.com/OpenNMT/OpenNMT-py/blob/
7c314f41dc1b017ac105144beeb53cb072960a54/onmt/utils/statistics.py

2https://opennmt.net/OpenNMT/training/logs/

90

92

94

96

98

100

P
er

ce
nt

ag
e

Inferred code is Vulnerable

Mutated
Obfuscated
Raw

2000 6000 10000
Iteration

90

92

94

96

98

100

P
er

ce
nt

ag
e

Inferred code is Compilable

Mutated
Obfuscated
Raw

Fig. 3: Performance (Accuracy) of INTJECT at different
model configurations (training iterations) for different

datasets (original raw, obfuscated and mutated datasets)

3 Our implementation is built on top of the OPENNMT
framework4 in Pytorch on a DELL computer with an Intel(R)
Core i7 2720qm running Windows OS equipped with a Debian
virtual machine (VM). All our prototypes are single-threaded.
Experiments were conducted on Google Collab5 (free edition)
with 13 GB of RAM, 40 GB of Hard drive, CPU Intel(R)
Xeon(R) CPU @ 2.30GHz, GPU Tesla T4.

V. RESULTS

In this section, we evaluate the effectiveness of INTJECT
in vulnerability injection. We also examine the contribution
of our mutation-based data manipulation approach and the
semantic similarity of the vulnerable code generated by INT-
JECT to the original vulnerable code.

3https://github.com/Petit-Benjamin/VulnerabilityInjectionNLP
4https://opennmt.net/
5https://colab.research.google.com/signup

https://github.com/OpenNMT/OpenNMT-py/blob/7c314f41dc1b017ac105144beeb53cb072960a54/onmt/utils/statistics.py
https://github.com/OpenNMT/OpenNMT-py/blob/7c314f41dc1b017ac105144beeb53cb072960a54/onmt/utils/statistics.py
https://opennmt.net/OpenNMT/training/logs/
https://github.com/Petit-Benjamin/VulnerabilityInjectionNLP
https://opennmt.net/
https://colab.research.google.com/signup

TABLE IV: Vulnerability Injection Effectiveness of INTJECT (using 10000 model training iterations and < 100 tokens). Best
performance are in bold text. (“#” = “Number of”, “%” =“Percent of”, “Obf.” = “Obfuscated”, “Impr.” = “Improvement”)

INTJECT with % Impr. over Raw Data % Impr. over Obf. Data
Generated Code Default (Mutated) Raw Data Obfuscated Data INTJECT using INTJECT using

% # % # % Obf. Data Mut. Data Raw Data Mut. Data
#Compilable 1512 99.67% 1193 99.92% 1141 95.56% -4.36% -0.25% 4.56% 4.30%
#Vulnerable 1510 99.34% 1182 98.99% 1116 93.47% -5.58% 0.35% 5.91% 6.28%

A. RQ1 Effectiveness

In this experiment, we investigate the effectiveness of our
approach (INTJECT) in successfully injecting a vulnerability
into benign code. Specifically, given benign code, we examine
the effectiveness of INTJECT in transforming the benign code
into vulnerable code. This experiment employs the default
setting of INTJECT, i.e., using the dataset produced by our
mutation-based data manipulation approach. Figure 3 and
Table IV (“Default (Mutated)” column) provide details of the
effectiveness of INTJECT under this setting.

We found that our approach (INTJECT) is effective in
injecting security vulnerabilities into benign code. Almost
all (99.67% of) programs produced by INTJECT are com-
pilable, and most (99.34% of) programs produced by IN-
TJECT are both vulnerable and compilable (see Table IV
“Default (Mutated)” column). This result suggests that our
approach effectively learns both the intent of the vulnerable
code as well as the program syntax required to inject these
vulnerabilities. Figure 3 further shows that default INTJECT
(with mutated data) is effective (96 to 99%) across different
model training configurations (i.e., 2,000, 6,000, and 10,000
training iterations). However, we observed that INTJECT
performs best at higher training iterations (6,000 and 10,000).
Overall, INTJECT is highly effective (up to 99% accuracy)
in vulnerability injection across datasets, albeit its default
mutated data mode consistently outperforms the alternative
data manipulation approaches (raw and obfuscated data). We
believe INTJECT is effective in vulnerability injection because
it accurately learns the intent of the vulnerability, i.e., the
context of the vulnerability as well as the program features
required to effectively inject these vulnerabilities.

INTJECT is highly effective in injecting software
vulnerabilities into benign code: Almost all (99.34% of)

programs produced by INTJECT are vulnerable and valid.

B. RQ2 Semantic-preserving Program Mutation

This experiment examines the contribution of our semantic-
preserving mutation-based data transformation approach to the
effectiveness of INTJECT. To address this, we evaluate how
INTJECT performs given the three different datasets, namely
the original raw dataset, an obfuscated dataset and a mutated
dataset produced by our data transformation approach. In par-
ticular, we compare the performance of INTJECT when using
mutation-based transformation approach versus the original
raw dataset or the obfuscated dataset. Figure 3 and Table IV

(“% Impr. over Raw/Obf. Data INTJECT using Mut. Data”)
highlight the results of this experiment.

Our results show that INTJECT is (up to 6.28%) more
effective in vulnerability injection than the original dataset
or the obfuscated dataset. Specifically, Table IV and Figure 3
show that mutation-based data transformation improves the
accuracy of INTJECT over the original dataset and the ob-
fuscated dataset by 0.35% and 6.28%, respectively. Inspecting
the number of generated compilable code, INTJECT (with
the mutated dataset) is better than the obfuscated dataset but
comparable to the original raw dataset. In comparison to the
obfuscated dataset, our mutation-based data transformation
improves the percentage of compilable code by 4.30%. We
also observed that this performance is comparable to that of
the original dataset, it is only slightly (-0.25%) less effective
than the original dataset. The performance of our mutation-
based data transformation suggests that it is comparable to
the original dataset, but more effective than the obfuscated
dataset. This is due to the semantic-preserving nature of our
program mutations and its ability to increase the diversity of
the vulnerability context.

The mutation-based data transformation of INTJECT is
(6.28%) more effective in vulnerability injection than the
obfuscated dataset and comparable to the raw dataset.

C. RQ3 Semantic Similarity to Original Vulnerable Code

In this experiment, we compare the semantic similarity of
the vulnerable code generated by INTJECT to the original
vulnerable code in our dataset. For each generated code pairs,
we examine if the vulnerable code generated by INTJECT
is semantically similar to the original vulnerable code in
the vulnerability dataset by comparing the difference in the
bytecode representation of both programs, using SootDiff [24].
This gives the difference in the program dependence between
both programs while abstracting from syntactic sugar such
as specific variable names. For a balanced evaluation, we do
not account for the distance between String values because
of the obfuscated dataset to avoid inflated computation of
semantic differences. We report the semantic difference in
terms of the Levenshtein difference between the bytecode rep-
resentations of both programs. Table V and Figure 4 show the
results of this experiment for each dataset and configuration.

Our evaluation results show that given benign code, INT-
JECT generates vulnerable code that are highly semantically
similar to the original code in the dataset. Specifically, the
semantic difference between the generated code by INTJECT

TABLE V: Percentage of compilable (“Comp.”) and vulnerable (“Vuln.”) programs generated by INTJECT which are
semantically different (SootDiff > 0) from the original vulnerable code in the Vulnerability Dataset, for different datasets,

and model configurations (number of training iterations). Best Results (i.e., lowest difference) are in bold text. (“%”
=“Percent of”, “Obf.” = “Obfuscated”, “Reduc.” = “Reduction of Vulnerable Code”, “N/A” = “Not Applicable”)

#Model %Comp. Code by INTJECT %Vuln. Code by INTJECT % Reduc. over Raw Data % Reduc. over Obf. Data
Training Default Raw Obf. Default Raw Obf. INTJECT using INTJECT using
Iterations (Mutated) Data Data (Mutated) Data Data Obf. Data Mut. Data Raw Data Mut. Data
2000 4.02 2.63 3.21 2.83 0.51 0.44 -0.14 454.90 15.90 543.18
6000 0.97 2.91 1.67 0.26 0.00 0.44 N/A N/A -100 -40.91
10000 0.33 2.36 1.09 0.00 0.25 0.35 40 -100 -28.57 -100

and the original vulnerable code is very low, they share almost
the same program dependence features. For instance, consider
the experiments with INTJECT (mutated dataset versus raw
dataset) at 10,000 model training iterations which is the best
performance across all settings. We observed that only 0.33%
of the compilable code generated by default INTJECT (using
mutated dataset) are semantically different from the original
code in the vulnerability dataset (last row, second column
of Table V). This corresponds to about five (5) programs
with semantic difference (SOOTDIFF Levenshtein difference)
less than 50 (Figure 4). Meanwhile, 2.36% of the compilable
code generated by INTJECT using the original raw dataset
are semantically different (SootDiff > 0) from the original
code in the vulnerability dataset (last row, third column of
Table V), for the same setting. This corresponds to about 13
programs with Levenshtein difference up to 250 (Figure 4).
Overall, Table V shows that most vulnerable code generated
by INTJECT match the original vulnerable code at the default
configuration with 10,000 model training iterations. This is
evident by the low Levenshtein distance (of zero at 10,000
iterations) between the vulnerable code and the generated
code by INTJECT (see Table V). These results suggest that
INTJECT generates vulnerable code that are highly similar to
the original vulnerable code in the vulnerability dataset.

INTJECT automatically generates vulnerable code that are
quite similar (semantically) to the original vulnerable code.

This means that the program dependence difference
between the generated and original vulnerable code is very

low (frequently as low as zero).

Additionally, we found that our mutation-based data trans-
formation has the best performing semantic similarity. Com-
paring the semantic similarity of the generated code for the
different datasets under different model configurations, we
observed that our mutated dataset performs best, especially
after 10,000 model training iterations. In this setting, INT-
JECT using the mutated dataset outperforms the obfuscated
and original dataset by up to 100% reduction in semantic
difference between vulnerable and generated code (e.g., last
column, last row of Table V). This performance is followed
by the raw dataset and the obfuscated dataset. Figure 4 further
shows that default INTJECT (with the mutated data) outper-
forms both the original dataset and the obfuscated dataset in
generating semantically similar valid code. It generates fewer

Mut. (5 progs.) Obf. (27 progs.) Raw (13 progs.)
Dataset

50

100

150

200

250

Le
ve

ns
ht

ei
n

di
st

an
ce

Fig. 4: Semantic difference (in SOOTDIFF Levenshtein
distance) between generated valid (i.e., compilable) code and

the original code for each dataset (at 10,000 iterations).

(5) valid programs that are semantically different from the
original dataset and it has a very low Levenshtein distance.

Inspecting the effect of model training iterations, we ob-
served that as the number of model training iterations in-
creases, the number of generated programs that are seman-
tically different (semantic difference > 0) from the original
vulnerable code reduces to almost zero for the mutated dataset.
At lower model iterations the number of semantically different
programs is slightly higher at about 0.26% at 6,000 iterations
and at the worst 2.83% at 2,000 iterations (see Table V). We
observed that mutating the dataset outperforms the original
dataset and data obfuscation. We attribute this performance to
our semantic-preserving program mutations which improves
the dataset diversity via varied vulnerability contexts.

INTJECT using the mutation-based data transformation
outperforms both the obfuscated dataset and the raw

dataset in generating semantically similar vulnerabilities.

VI. THREATS TO VALIDITY

This section discusses the limitations and threats to the
validity of our approach, experiments and findings.

External Validity: This refers to the generalizability of our
approach and results. The most important threat to external
validity is posed by the employed vulnerability dataset – Juliet
dataset [19]. While we are certain that INTJECT and our find-
ings hold for this dataset, there is the threat that our approach
and results may not hold for other vulnerability datasets.
Besides, INTJECT may not generalize to new or different
vulnerabilities. To mitigate this threat we have experimented
with five different CWEs from the Juliet dataset. Indeed, our
results and approach hold for these vulnerabilities, but may
not generalize to other vulnerabilities. However, our work
demonstrates that this approach (INTJECT) is applicable to
mature and up-to-date vulnerabilities (CWEs) in vulnerability
datasets such as Juliet. Juliet is a well-maintained vulnerability
dataset containing up-to-date CWEs reported by developers.
Hence, we expect that our findings and approach are applicable
to the tested CWEs and similar datasets.

Internal Validity: The threat to internal validity is posed by
the incorrectness of our implementation, specifically, whether
we have correctly implemented INTJECT for vulnerability
injection (as described). We have mitigated this threat by
testing our implementation of the approach and data analysis
pipeline with written tests. We have also conducted a manual
inspection of preliminary steps and results to ensure our im-
plementation works as expected. For instance, to validate our
data analysis pipelines, we manually inspected our code and
checked whether INFER, which is independent of our dataset,
finds the reported/generated vulnerabilities. This is a relatively
good sanity check that we indeed inject vulnerabilities.

Construct Validity: The main threat to construct validity
is posed by the semantic-preserving mutations. There is a
potential bias that there are duplicates or semantically similar
mutants in the resulting mutated datasets, especially since
we mutate the original dataset before performing train-test
splits. However, to mitigate this threat, we have filtered our
equivalent mutants in the resulting mutated dataset.

In addition, it is possible that (mutated) code snippets con-
sidered as benign in our setup contain other vulnerabilities,
i.e. unknown or undetectable by INFER. Although this may
threaten the validity of studies in adjacent research directions,
i.e. assessing vulnerability detection techniques, it does not
represent a major threat in our scope – injecting vulnerabilities
in code, be it benign or not. Yet, to mitigate this threat, we
consistently use the same definition of ”vulnerable” and ”be-
nign” for all treated codes, based on INFER predictions. Still,
as we rely on INFER to detect vulnerabilities, our work may
be impacted or inherit the limitations of this latter. Besides,
the only definite proof of a vulnerability is to (automatically)
exploit it, we consider the tasks of effective vulnerability
detection and automatic vulnerability exploitation as out of
the scope of this work. Moreover, automatically exploiting
or detecting vulnerabilities in any arbitrary code remains an
ongoing research theme in the community [4], [30].

VII. RELATED WORK

Vulnerability injection: PiTest (an extended version of
PIT [31]) is a tool using syntactic transformations to seed
vulnerabilities into a Java code by inverting the Findbugs
patterns. The tool supports 15 mutation operators designed
to insert security vulnerabilities on Java programs [7] using
syntactic matches. As such it cannot automatically learn or
extend this set without any manual effort and analysis as
INTJECT. Moreover, PiTest does not consider the surrounding
code context, where the patterns apply, restricting its ability
to inject some complex types of bugs.

Lava is a tool developed to inject and validate buffer
overflow vulnerabilities in C code. To do so, this tool inserts
a bug by looking at situations where an input can trigger a
read or write overflow [1]. The tool then introduces guard
conditions, based on the trace of a test case that executes this
location, such that when the conditions are met a vulnerability
is considered to be discovered. In essence, this results in a case
where every test traversing the trace of the test case that was
used to inject the vulnerability also reveals it. Unfortunately,
this method is only suitable for evaluating fuzzers as the
resulting code is artificial, easily detectable by static analysis
techniques, and of limited bug types. Moreover, generalizing
it to other types of vulnerabilities remains a challenge. In
contrast INTJECT can support multiple types of vulnerabil-
ities and it can learn their intent and produce more natural
vulnerable code.
Data transformation: Evilcoder [32] is a tool able to detect
where to inject vulnerabilities and remove the security mecha-
nism to make the code vulnerable, using a dataset transforma-
tion approach. It uses static analysers to find sensitive sinks
matching bug patterns. This means that it only supports guard
condition deletions. As this tool uses static analysis to inject
vulnerabilities, its purpose is more to generate new test corpora
than to evaluate bug-finding techniques.
NLP for Fault injection (not vulnerability injection):
CodeBERT [33] is an NL-PL model designed by Microsoft
researchers. This is a pre-trained model for Programming
Languages. The usage of this model in the fault injection
domain shows its ability to seed “natural” faults that, we can
say, semantically resemble real faults [34], [35]. Effectively,
the faults injected resemble what a real programmer could
write (regarding the programmatic rules, convention, etc) [36].

CodeBERT has also been applied for mutation testing [35],
[36]. For this purpose, researchers used the Masked Language
Modeling task that takes a sentence with one masked token
and the goal of the model is to find the most likely tokens to
replace it. This model can take up to 512 tokens as input, it
then predicts the five best solutions for the masked token as
output. Being already pre-trained on more than six (6) million
programs, the tool can inject faults. It creates mutants that
emulate the behaviour of real faults. We note that CodeBERT
is not specifically trained on a dataset containing faults, but
rather on general corpus of programs to learn the “language”
of code [37]. However, unlike INTJECT, this approach does

not necessarily inject vulnerabilities or security-related bugs.
Tufano et al. [27] have also used a bi-directional RNN

Encoder-Decoder to automatically insert bugs in code. The
dataset used to train their model is a corpora of bugs-fixes
from GitHub repositories from which they extracted pairs
of vulnerable-benign methods of maximum 50 tokens. Their
fault-injection tool is on the method-level. In fact, one method
is supposed to implement only one task and contain enough
context for the model. Hence, their model can take as input
a method of maximum 50 tokens and should predict the
buggy version of this method. They also experiment the same
work with larger methods, up to 100 tokens but with lower
prediction performance (when the prediction reintroduces the
original bug) (around 6% vs around 20% for the 50 max tokens
version of the tool). This work is focused on injecting faults
in programs with no specific focus on security-related bugs.
In contrast, INTJECT is focused on injecting vulnerabilities
into benign code snippets.
NLP for Vulnerability Prediction: Existing work in vulnera-
bility prediction aims to define hand-crafted program features
(such as libraries, function calls and code churn) that could
be associated with vulnerabilities in order to detect such vul-
nerabilities [30], [38]–[41]. Other approaches have proposed
learning-based methods to detect vulnerabilities, in particular,
using NLP techniques such as text mining (bag of words) [42],
[43]. Unlike the aforementioned works, in this work, we are
focused on vulnerability injection rather than vulnerability de-
tection. Our approach is able to generate vulnerable code from
clean benign code using a combination of semantic-preserving
program mutations and NLP-based machine learning methods
– Neural Machine translation (Seq2Seq).

VIII. CONCLUSION

This paper presents a vulnerability injection method (called
INTJECT) that captures program syntax and vulnerability
intent via a synergistic combination of semantic-preserving
program mutations and neural machine translation (Seq2Seq).
We demonstrate that our approach effectively learns program
syntax and vulnerability intent. INTJECT is highly effective
in vulnerability injection, almost (99%) code generated by
INTJECT are vulnerable. We also address the problem of
improving an existing dataset while preserving the intent of
the vulnerability in the original dataset. This is useful for
improving the effectiveness of learning-based vulnerability
injection methods. In addition, we show that our mutation-
based data transformation approach is more effective than
the baselines, i.e., the original (raw) dataset and obfuscated
dataset. Finally, we demonstrate that our approach (INTJECT)
generates vulnerable code that is highly semantically similar
(in program dependence) to the original vulnerable code.

Our contributions suggest a couple of potential future devel-
opments. At the dataset level, we would like to further explore
eventual diversification of the program mutations process, in
particular, to try other semantic-preserving transformations and
operators. At the NLP model level, we would like to explore
the benefits of using a transformer approach instead of an

RNN. Such powerful models could in principle learn larger
vulnerable intents. Using a pre-trained language model (such
as CodeBERT) and fine-tuning it for vulnerability could ad-
dress both large computational needs for training and scarcity
of very large vulnerable datasets. Moreover, we plan to con-
duct a large-scale empirical study to compare the performance
and usability of INTJECT to similar vulnerability injection
techniques (e.g., Lava and Pitest), using several open-source
programs. Finally, we plan to explore the capability of our
mutation-based vulnerability injection method (INTJECT) to
measure and assess the effectiveness of vulnerability detection
methods (such as INFER).

ACKNOWLEDGMENT

This work was supported by the Luxembourg National
Research Fund (FNR) TestFast Project, ref. 12630949, the
Fonds National de la Recherche Scientifique (FNRS) EOS
VeriLearn project (Grant O05518F-RG03), and the ERDF
project IDEES. Gilles Perrouin is an FNRS Research associate.

REFERENCES

[1] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robert-
son, F. Ulrich, and R. Whelan, “Lava: Large-scale automated vulnera-
bility addition,” in 2016 IEEE Symposium on Security and Privacy (SP),
2016, pp. 110–121.

[2] J. Voas and G. McGraw, Software Fault Injection: Inoculating Programs
Against Errors. John Wiley & Sons, 1997.

[3] M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. L. Traon, “Threats
to the validity of mutation-based test assessment,” in Proceedings of
the 25th International Symposium on Software Testing and Analysis,
ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016, A. Zeller and
A. Roychoudhury, Eds. ACM, 2016, pp. 354–365. [Online]. Available:
https://doi.org/10.1145/2931037.2931040

[4] J. Fonseca, M. Vieira, and H. Madeira, “Vulnerability & attack injection
for web applications,” in 2009 IEEE/IFIP International Conference on
Dependable Systems & Networks. IEEE, 2009, pp. 93–102.

[5] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman,
“Chapter six - mutation testing advances: An analysis and survey,”
Adv. Comput., vol. 112, pp. 275–378, 2019. [Online]. Available:
https://doi.org/10.1016/bs.adcom.2018.03.015

[6] M. Kintis, M. Papadakis, Y. Jia, N. Malevris, Y. L. Traon, and
M. Harman, “Detecting trivial mutant equivalences via compiler
optimisations,” IEEE Trans. Software Eng., vol. 44, no. 4, pp. 308–333,
2018. [Online]. Available: https://doi.org/10.1109/TSE.2017.2684805

[7] T. Loise, X. Devroey, G. Perrouin, M. Papadakis, and P. Heymans,
“Towards security-aware mutation testing,” in 2017 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), 2017, pp. 97–102.

[8] L. Liu, Z. Li, Y. Wen, and P. Chen, “Investigating the impact of
vulnerability datasets on deep learning-based vulnerability detectors,”
PeerJ Computer Science, vol. 8, p. e975, 2022.

[9] Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk,
and M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-
to-end program repair,” IEEE Transactions on Software Engineering,
vol. 47, no. 9, pp. 1943–1959, 2021.

[10] T. Boland and P. E. Black, “Juliet 1.1 C/C++ and java test suite,”
Computer, vol. 45, no. 10, pp. 88–90, 2012. [Online]. Available:
https://doi.org/10.1109/MC.2012.345

[11] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” Acm sigplan notices,
vol. 39, no. 12, pp. 92–106, 2004.

[12] V. Kashyap, J. Ruchti, L. Kot, E. Turetsky, R. Swords, S. A. Pan,
J. Henry, D. Melski, and E. Schulte, “Automated customized bug-
benchmark generation,” in 2019 19th International Working Conference
on Source Code Analysis and Manipulation (SCAM), 2019, pp. 103–114.

[13] A. Khanfir, A. Koyuncu, M. Papadakis, M. Cordy, T. F. Bissyandé,
J. Klein, and Y. Le Traon, “Ibir: Bug report driven fault injection,”
ACM Trans. Softw. Eng. Methodol., may 2022, just Accepted. [Online].
Available: https://doi-org.proxy.bnl.lu/10.1145/3542946

https://doi.org/10.1145/2931037.2931040
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1109/TSE.2017.2684805
https://doi.org/10.1109/MC.2012.345
https://doi-org.proxy.bnl.lu/10.1145/3542946

[14] W. Bonnaventure, A. Khanfir, A. Bartel, M. Papadakis, and Y. Le Traon,
“Confuzzion: A java virtual machine fuzzer for type confusion vulner-
abilities,” in IEEE 21st International Conference on Software Quality,
Reliability and Security (QRS), 12 2021, pp. 586–597.

[15] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,
P. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez, “Moving
fast with software verification,” in NASA Formal Methods, K. Havelund,
G. Holzmann, and R. Joshi, Eds. Cham: Springer International
Publishing, 2015, pp. 3–11.

[16] C. K. Behera and D. L. Bhaskari, “Different obfuscation techniques for
code protection,” Procedia Computer Science, vol. 70, pp. 757–763,
2015, proceedings of the 4th International Conference on Eco-
friendly Computing and Communication Systems. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050915032780

[17] S. Designs, “Java source code obfuscator,”
http://www.semdesigns.com/products/obfuscators/JavaObfuscator.html,
5 2022.

[18] OpenNMT, “An open source neural machine translation system,” https:
//opennmt.net/, 5 2022.

[19] P. Black, “Juliet 1.3 test suite: Changes from 1.2,” 06 2018.
[20] M. Corporation, “The common weakness enumeration (cwe) initiative,”

http://cwe.mitre.org/, 5 2022.
[21] K. Goseva-Popstojanova and A. Perhinschi, “On the capability of

static code analysis to detect security vulnerabilities,” Information and
Software Technology, vol. 68, pp. 18–33, 2015.

[22] S. M. Ghaffarian and H. R. Shahriari, “Software vulnerability analysis
and discovery using machine-learning and data-mining techniques: A
survey,” ACM Computing Surveys (CSUR), vol. 50, no. 4, pp. 1–36,
2017.

[23] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and
D. Poshyvanyk, “An empirical study on learning bug-fixing patches
in the wild via neural machine translation,” ACM Trans. Softw. Eng.
Methodol., vol. 28, no. 4, pp. 19:1–19:29, 2019. [Online]. Available:
https://doi.org/10.1145/3340544

[24] A. Dann, B. Hermann, and E. Bodden, “Sootdiff: Bytecode comparison
across different java compilers,” in Proceedings of the 8th ACM
SIGPLAN International Workshop on State Of the Art in Program
Analysis, ser. SOAP 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 14–19. [Online]. Available:
https://doi.org/10.1145/3315568.3329966

[25] V. I. Levenshtein et al., “Binary codes capable of correcting deletions,
insertions, and reversals,” in Soviet physics doklady, vol. 10, no. 8.
Soviet Union, 1966, pp. 707–710.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, 12 1997.

[27] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and
D. Poshyvanyk, “Learning how to mutate source code from bug-fixes,”
in 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2019, pp. 301–312.

[28] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common
c language errors by deep learning,” in Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, ser. AAAI’17. AAAI Press,
2017, p. 1345–1351.

[29] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and
D. Poshyvanyk, “An empirical study on learning bug-fixing patches

in the wild via neural machine translation,” ACM Trans. Softw.
Eng. Methodol., vol. 28, no. 4, sep 2019. [Online]. Available:
https://doi.org/10.1145/3340544

[30] J. Fonseca and M. Vieira, “Mapping software faults with web security
vulnerabilities,” in 2008 IEEE international conference on dependable
systems and networks With FTCS and DCC (DSN). IEEE, 2008, pp.
257–266.

[31] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque,
“Pit: a practical mutation testing tool for java,” in Proceedings of the
25th international symposium on software testing and analysis, 2016,
pp. 449–452.

[32] J. Pewny and T. Holz, “Evilcoder: Automated bug insertion,” CoRR,
vol. abs/2007.02326, 2020. [Online]. Available: https://arxiv.org/abs/
2007.02326

[33] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[34] R. Natella, D. Cotroneo, J. A. Duraes, and H. S. Madeira, “On fault
representativeness of software fault injection,” IEEE Transactions on
Software Engineering, vol. 39, no. 1, pp. 80–96, 2012.

[35] M. Ojdanic, A. Garg, A. Khanfir, R. Degiovanni, M. Papadakis, and Y. L.
Traon, “Syntactic vs. semantic similarity of artificial and real faults in
mutation testing studies,” arXiv preprint arXiv:2112.14508, 2021.

[36] R. Degiovanni and M. Papadakis, “µbert: Mutation testing using
pre-trained language models,” 2022. [Online]. Available: https:
//arxiv.org/abs/2203.03289

[37] A. Khanfir, M. Jimenez, M. Papadakis, and Y. L. Traon, “Codebert-nt:
code naturalness via codebert,” arXiv preprint arXiv:2208.06042, 2022.

[38] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in Proceedings of the 14th ACM
Conference on Computer and Communications Security, ser. CCS ’07.
New York, NY, USA: Association for Computing Machinery, 2007, p.
529–540. [Online]. Available: https://doi.org/10.1145/1315245.1315311

[39] Y. Shin and L. Williams, “Can traditional fault prediction models be used
for vulnerability prediction?” Empirical Software Engineering, vol. 18,
no. 1, pp. 25–59, Feb. 2013.

[40] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” IEEE Trans. Softw. Eng., vol. 37, no. 6, p.
772–787, Nov. 2011. [Online]. Available: https://doi.org/10.1109/TSE.
2010.81

[41] I. Chowdhury and M. Zulkernine, “Using complexity, coupling, and
cohesion metrics as early indicators of vulnerabilities,” J. Syst.
Archit., vol. 57, no. 3, p. 294–313, Mar. 2011. [Online]. Available:
https://doi.org/10.1016/j.sysarc.2010.06.003

[42] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting
vulnerable software components via text mining,” IEEE Transactions on
Software Engineering, vol. 40, no. 10, pp. 993–1006, 2014.

[43] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability
detection,” in 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-
21, 2018, 2018. [Online]. Available: http://wp.internetsociety.org/ndss/
wp-content/uploads/sites/25/2018/02/ndss2018 03A-2 Li paper.pdf

https://www.sciencedirect.com/science/article/pii/S1877050915032780
https://opennmt.net/
https://opennmt.net/
http://cwe.mitre.org/
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3315568.3329966
https://doi.org/10.1145/3340544
https://arxiv.org/abs/2007.02326
https://arxiv.org/abs/2007.02326
https://arxiv.org/abs/2203.03289
https://arxiv.org/abs/2203.03289
https://doi.org/10.1145/1315245.1315311
https://doi.org/10.1109/TSE.2010.81
https://doi.org/10.1109/TSE.2010.81
https://doi.org/10.1016/j.sysarc.2010.06.003
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-2_Li_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-2_Li_paper.pdf

	Introduction
	Overview
	Motivating Example
	Intent of Vulnerability Injection
	Syntactic difference
	Vulnerability Context

	Limitations of the State-of-the-art
	Limited Syntactic Patterns
	Dataset Limitations

	IntJECT

	Methodology
	Experimental Setup
	Research Questions
	Vulnerability Dataset (CWEs) and Oracle
	Vulnerability Dataset
	Oracle

	Experimental Datasets
	Original Dataset
	Obfuscated Dataset
	Mutated Datasets

	Research Protocol
	Metrics and Measures
	Predictive Accuracy
	Semantic Difference (SootDiff)
	Levenshtein Distance

	Training Configurations & Settings
	Implementation Details and Platform

	Results
	RQ1 Effectiveness
	RQ2 Semantic-preserving Program Mutation
	RQ3 Semantic Similarity to Original Vulnerable Code

	Threats to Validity
	Related Work
	Conclusion
	References

