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Abstract—Various mutation approximation techniques have 

been proposed in the literature in order to reduce the 

expenses of mutation. This paper presents results from an 

empirical study conducted for first and second order 

mutation testing strategies. Its scope is to evaluate the 

relative application cost and effectiveness of the different 

mutation strategies. The application cost was based:  on the 

number of mutants, the equivalent ones and on the number 

of test cases needed to expose them by each strategy. Each 

strategy’s effectiveness was evaluated by its ability to expose 

a set of seeded faults. The results indicate that on the one 

hand the first order mutation testing strategies can be in 

general more effective than the second order ones. On the 

other hand, the second order strategies can drastically 

decrease the number of the introduced equivalent mutants, 

generally forming a valid cost effective alternative to 

mutation testing.   

Keywords—mutation testing, higher order mutation 

I. INTRODUCTION  

Software testing has always been considered as the 
main method for revealing errors in an attempt to 
determine the level of confidence required before the 
software’s prerelease time. This activity requires the 
generation of test data. The quality of these data sets is 
measured by their ability to examine certain software 
features. Measures of this kind identify the level of the 
occurrences of certain software features that are 
successfully exercised. Different features give rise to the 
definition of various criteria. Their evaluation requires the 
software execution with actual data in order to exercise 
specific elements, such as statements, branches, paths etc. 
Such being the case coverage criteria can be regarded as 
the vehicle for appropriate test data generation for 
increasing the software’s level of confidence.  

Mutation testing is a well known fault detection 
technique used for producing high quality test cases. 
Mutation has a widespread reputation of being one of the 
most effective but together most expensive software 
testing techniques. In order to reduce the application cost 
of mutation, various researchers have suggested the use of 
approximation strategies. These strategies promise to 
decimate the application cost while maintaining the 
widespread mutation effectiveness.  

Empirical results of the various mutation alternatives 
have also appeared in the literature [1], [2] and [3]. These 
studies clearly show a remarkable reduction of the 
necessary elements required by the strategies. 
Nevertheless, because of the relatively small number of 
conducted studies, researchers have not gained enough 
experience about the application benefits of these 

strategies. This study presents extensive experimental data 
on mutation testing approximation strategies. It tries to 
answer the question of which strategy to use and when. 
The study and its results are concentrated and presented on 
a best effort basis in order to help testers choose and apply 
a specific strategy as appropriate.  

Mutation testing approximation strategies mainly rely 
on the fact that most of the produced mutants are 
redundant in the sense that they are “almost” always killed 
when some others are killed. Thus, approximation 
strategies try to produce in a heuristic way non redundant 
mutants. Such strategies are commonly referred to in the 
literature as random selection or mutant sampling [3], [4] 
and selective mutation [2], [4], [5], [6]. The mutant 
sampling strategies randomly apply only a specific 
percentage of the whole set of introduced mutants. The 
selective strategies try to apply only a subset of the whole 
set of mutant operators.  

Recently, new mutation testing strategies have been 
suggested based on the notion of higher order mutants [7], 
[8]. In this approach mutants are constructed based on the 
application of two or more mutants at a time. Preliminary 
investigation [7] seems to suggest their limited impact on 
the testing quality, while recording important savings in 
required test elements. Although promising, these 
strategies have not been adequately assessed empirically or 
compared to others. This forms the main issue of the 
present research. 

The aim of the present study is to measure the impact 
of the fault detection ability and the main cost factors of 
the various mutation approximations, for both first and 
second order mutation methods, with respect to a given set 
of mutants. Additionally, to compare the mutation testing 
strategies in a cost-benefit fashion. The above intentions 
were studied in a conducted experiment involving a set of 
moderate size industrial programs written in the C 
programming language. The performed experiment tries to 
provide an insight of applying second order mutation 
testing strategies in practice. 

The obtained results suggest that the second order 
strategies can achieve remarkable savings in relation to the 
introduced equivalent mutants when compared to the first 
order ones. Also noticeable is that they necessitate a small 
number of test cases without sacrificing their fault 
detection ability.  

II. MUTATION TESTING STRATEGIES 

Mutation testing is a powerful fault-based testing 
technique. It was initially introduced by Hamlet [9] and 
DeMillo, Lipton and Sayward [10] and forms the focus of 



this paper. Generally mutation analysis embeds faults into 
the testing objectives and assesses the performed test 
quality based on the exposition ratio of the embedded 
faults. Obviously, both the testing effort and quality are 
mainly influenced by the size and the quality of the 
introduced fault set. This section presents mutation testing 
strategies dealing with this issue.  

A. Mutation Testing Criterion 

Usually, mutation testing induces syntactical 
alterations of the code under test producing mutant 
versions of the examined code. Each program version is 
called mutated version. These syntactic changes are 
performed based on a set of syntactic rules called mutation 
operators. Test cases are used to execute the candidate set 
of mutated versions with the goal of distinguishing them 
from the original one. A mutant is said to be killed if there 
is a test that distinguishes its output from the output of the 
original program whereas, it is said to be equivalent if 
there are not such distinguishing inputs. Assessing tests 
with the killing mutants’ ratio is considered as a measure 
of the quality of the testing thoroughness. More details 
about mutation testing can be found in [4].  

B. First Order Mutation Testing Strategies 

A significant portion of the mutation testing demands 
is influenced by the generation and execution of the 
candidate set of mutants. By considering a small sample 
(percentage say x%) of mutants, a significant cost 
reduction can be achieved [3]. Empirical studies [3] have 
shown that a selection of 10% of mutants results in a 16% 
loss of the fault detection ability of the produced test sets 
compared to full mutation testing. In the present study, the 
considered strategies referred to as first order strategies 
(Rand x%) select the x% portion of the initial mutant set, 
where x = 10, 20, 30, 40, 50 and 60. The reason behind the 
use of these sets of mutants in the present experiment is 
twofold. The first reason is to revalidate the findings of 
previous studies by their application to larger cases and 
different programming language constructs. The second is 
to attempt to answer the question of whether it is the 
number of mutants or the adopted strategies that influence 
the effectiveness of the first and second order mutation 
methods. 

C. Second Order Mutation Testing Strategies 

Another approximation approach for reducing the 
mutation testing effort was proposed in [7], based on the 
notion of second order mutants. According to this 
approach, given a set of first order mutants, a reduced set 
of pairs constructed from them can be produced. Every 
mutant program is embedded with two faults at a time and 
every first order mutant is contained in at least one second 
order mutated program. As a consequence, the number of 
mutants obtained is close to half the size of the original 
mutant suite [7].  

Different strategies of how the first order mutants 
should be combined can then be deduced. In the study of 
Polo et al. [7] three strategies were proposed. These 

strategies are: “RandomMix”, “DifferentOperators” and 
“LastToFirst”. In the first strategy the combination is made 
by randomly selecting the pairs of first order mutants using 
each mutant once. In the second one, every combined pair 
uses mutants produced by different operators. In the 
“LastToFirst” strategy the mutants were combined 
according to the order they were handled by the underlying 
tool. The mutant pairs are constructed based on the 
combination of the first one with the ultimate one, the 
second with the penultimate, etc [7]. The experimental 
results obtained by the above strategies were very 
encouraging, as a high reduction on the number of 
equivalent mutants was recorded. Additionally, the 
obtained results and the conducted risk analysis [7] 
suggested that there should be a small loss on the quality 
of the second order test suites. This conclusion needs 
further investigation as it was conducted with a few and 
small sized programs. Thus, the determination of the 
impact on the testing quality when using second order 
mutation strategies in comparison to first order ones forms 
the main objective of this paper.  

In the present experiment the first two of the above 
strategies were adopted as proposed in [7] and referred to 
as “RandMix” and “DiffOp” respectively. The third 
strategy (“LastToFirst”) was application depended to the 
underlying tool and thus was not considered. Additionally, 
five new strategies were produced. These strategies were 
influenced by the previously proposed ones. The first of 
these named “FirstToLast” denoted as “First2Last”, orders 
the first order mutants according to their respective 
statement appearance in the objective source code. The 
mutant pairs are then constructed based on the 
combination of the first with the ultimate mutant, the 
second with the penultimate one, etc. Of the remaining 
four, the “SameNode” combines the mutants by selecting 
them from the same basic block; the “SameUnit” selects 
the mutant pairs from the same program unit; the “Same 
Unit FirstToLast” denoted as “SU_F2Last” and “Same 
Unit Different Operators” denoted as “SU_DiffOp”, select 
candidate mutants based on the use of the “First2Last” and 
“DiffOp” approaches by applying them individually to 
each program unit. 

III. RELATED WORK 

Higher order mutation was initially introduced and 
examined in the context of mutant coupling effect [11]. In 
this study, higher order mutants (HOMs) were considered 
in order to examine if the produced tests by first order 
mutants (FOMs) are capable enough to detect the majority 
of second or third order mutants. The results obtained were 
in favor of the above statement. The idea of using HOMs 
for testing purposes was introduced by Polo et al. [7] as 
described above. This idea was further developed by Jia 
and Harman [8] who introduced the concept of subsuming 
HOMs. They advocate that a subsuming HOM is harder to 
kill than the FOMs from which it is constructed of and 
thus, it should be preferable to replace the FOMs with a 
single HOM. “Harder to kill” signifies that tests able to kill 
a HOM are also capable of killing each one of the FOMs 



from which it is constructed too. Also in an additional 
research work [12] the HOMs are constructed with the aim 
of both producing harder to kill mutants and also 
syntactically similar to the original program. All studies 
[7], [8] and [12] focus on reducing the required effort by 
mutation. This is accomplished by reducing the number of 
the candidate and equivalent mutants.  

Detecting equivalent mutants is a well known 
undecidable problem. Thus, only heuristic methods can be 
applied, such as those proposed by Offutt and Pan [13]. 
Gruen et al. [14] suggested an additional attempt to bypass 
this problem by focusing on specific (with high impact on 
program execution) likely to be non equivalent mutants. 

A comparison between various mutation strategies has 
been attempted by Offutt and Lee [1] in order to compare 
weak mutation variants. The conducted experiment 
suggested that weak mutation forms a viable alternative to 
mutation and also that it should be applied by using the 
statement or the basic block component strategy. Similar 
experiments were undertaken in the context of randomly 
selecting mutants [3] and selective mutation [2], [4], [5], 
[6] as described in previous sections. 

Experiments using mutation, such as [15] and [16], a 
comparison between various testing criteria is recorded. 
The comparison was performed by relating cost to the 
respective number of required tests and effectiveness to 
the number of faults revealed.  In [15] the fault detection 
rate was shown to be similar to the mutants’ killable rate 
and thus mutants were considered for modeling the criteria 
effectiveness instead. Whereas in [16] the comparison was 
based on the number of revealed manually seeded faults. 
However, these experiments do not consider second order 
mutants and therefore, not directly comparable with the 
present study. 

IV. EXPERIMENTATION 

This section describes the details about the conducted 
experiments including experimental description, the test 
objectives used and the various artifacts of the test design, 
containing the mutation operators used, the test cases and 
the faults seeded in the test objectives.  

In the experimental description that follows, the term 
strategy is used in order to refer to the various mutation 
approaches considered in the present experiment. The term 
fault is used to represent either manually seeded faults or 
real faults used to model the fault detection ability of the 
various strategies. The generated faults by the mutation 
operators are referred to as mutants. 

A. Definition of the Experiment  

The objective of this experiment is to compare the 
application benefits of various first and second order 
mutation testing strategies. The comparison is made based 
on measuring the various cost factors introduced by the 
testing process, such as the number of the produced 
mutants, the number of equivalent ones and the number of 
test cases needed to satisfy each mutation variant criterion. 
Also, the number of the exposed faults by each strategy is 
used to evaluate its relative strength. The experiment uses 

eight programs, for which sets of faults and large pools of 
test cases are available. Program details are given in the 
“Subject Programs” section (IV.B). For each test objective 
used, sets of mutant programs were generated according to 
each mutation testing strategy. Mutation operators and 
strategy details are given in section “Mutation Tool and 
Operators Used” (IV.C). Test suites were then constructed 
by selecting tests at random from the test pools utilizing 
the policies of the mutation strategies. All tests sets were 
then executed against the available faulty versions of the 
test programs recording the exposed fault rates. 
Comparison was then made based on the various cost and 
effectiveness factors of the considered strategies. The full 
details of the experimental regime are given in the section 
“The Experimental Regime” (IV.D). 

B. Selected Programs 

The selected objectives are composed of eight 
programs written in the C programming language. They 
have all been used in similar previous studies such as [8], 
[15], [17] and [18]. The first seven, form the well known 
Siemens suite while the eighth one is the Space program 
developed at the European Space Agency. All program 
details are presented in Table I.  

The seven Siemens programs and their associate faulty 
versions and test cases have been initially used by 
Hutchins et al. [19] to compare structural criteria. These 
were modified, extended and used by Rothermel and 
Harrold [20] and Graves et al. [21] in later studies. The 
faulty program versions were introduced by researchers 
with the aim of producing realistic fault versions [19].  

The last program (Space program) was initially used in 
the studies of Frankl et al. [22] and probably constitutes 
the most realistic object of the present study. This program 
is associated with 38 “real” faulty versions identified and 
corrected “during testing and the operative use of the 
program” as reported in [23]. The advantage of this 
program against to the other seven is that its faults are real 
ones. Thus, they should give a more realistic simulation on 
the fault detection ability of the produced test suites. All 
programs were chosen because of their extensive use in the 
literature and their availability along with their artifacts 
and can be found in the Subject Infrastructure Repository 
(SIR) at the University of Nebraska-Lincoln [18]. 

The test cases associated with each object program 
were constructed based on both black-box and white-box 
testing techniques such as: random, category-partition, all 
statements, all edges and all definition-use pairs. 

TABLE I.  TEST PROGRAMS DETAILS 

Program 
Number of 

LOC 

Number of 

Test Cases 

Number of 

Faults 

Schedule 296 2650 9 

Schedule2 263 2710 10 

Tcas 137 1608 41 

Totinfo 281 1052 23 

Printtokens 343 4130 7 

Printtokens2 355 4115 10 

Replace 513 5542 32 

Space 5905 13585 38 
 



In Harder et al. [24], details of the construction of these 
test sets are given. The population of the available test 
cases consists of a relatively large number of test cases. 
These were not necessarily constructed for killing mutants 
and thus make the sampling population rather realistic. 

C. Mutation Tool and Operators Used 

In order to apply the first and second order mutation 
testing strategies, the Proteum mutation testing system, by 
Delamaro and Maldonado [25], was used. Proteum uses 77 
operators all implemented according to Agrawal et al. 
[26]. This set of operators requires huge computational 
resources in order to generate mutants and execute them. 
In order to complete the present experiment with 
reasonable resources two general reductions were used. 
First, a restriction on the considered mutant operators was 
made. All mutant operators provided under the general 
class of “operators” [26] were considered. This set of 
mutants is composed of 44 operators which either alter or 
insert programming language operators where appropriate. 
Second, for the space program, one additional restriction 
was imperative. This was due to the vast number of 
produced mutants (22,500 mutants). Therefore, a 10% of 
them were selected, based on their production order. Thus, 
every 10

th
 produced mutant was considered. It is noted that 

a different set of first order mutants was constructed in 
every experiment repetition (all the experiments were 
repeated five times). This approach has also been 
undertaken by other studies such as [15] and [17]. 

The aim of the present paper is to measure the impact 
on the quality of the produced test cases when using 
approximation strategies over an initial mutant set. All the 
undertaken approximations rely only on an initial set of 
mutants (common to all used strategies) which form the 
basis of the experimental comparison. Thus, the use of the 
above restrictions should affect the test quality only of the 
initial set mutant sets.  

The second order mutants were constructed based on 
the combined use of the first order ones. For the 
experimental needs, a prototype framework was built in 
order to collect the first order mutants and construct the 
various second order ones according to each strategy (see 
section “mutation testing strategies”-II).  It is noted that all 
second order mutants were produced based on the 
considered set of first order ones and that every first order 
mutant is embodied in at least one pair of second order 
mutants for every undertaken strategy. 

D. The Experimental Regime  

The results reported in the following sections are 
derived based on the application of the various first and 
second order mutation testing strategies. Generally, the 
experiment has two legs. In the first leg, the analysis 
procedure followed was initially to generate a set of 
mutants and their respective test cases according to each 
strategy. In the second leg, tests were chosen at random. 
Then for both legs a comparison based on various cost 
factors in combination to the fault exposing ability of the 
generated test sets was made.   

Initially, all mutants were generated and compiled in 
order to determine the mutant candidate set for each 
strategy. In order to avoid any bias introduced by the 
random selection or combination of mutants all the 
experiments were repeated independently five times. All 
mutant sets were then executed against all available test 
cases. All live mutants were eliminated from the mutants’ 
sets as being equivalent. The elimination is based on an 
approximation method described below. Although this 
approach does not guarantee their equivalence, it was 
chosen in order to complete the experiment with 
reasonable resources. It is believed that this approximation 
fulfils the general goals of the present study as there 
should be minimal chances for non-equivalent mutants to 
be left alive after their exercise with such a huge and high 
quality data test set. Additionally, such an approximation 
method has also been used in similar studies such as [17]. 
Nevertheless, all eliminated mutants form sets (one set per 
strategy) of likely to be equivalent mutant sets. It should 
be noted that each of these sets contains the maximum 
possible number of equivalent mutants and thus, in the 
results obtained their actual number should be even 
smaller than the one reported. In the rest of the present 
paper they will be referred to as equivalent mutants.   

Initially, six sets of test cases per strategy were 
generated based on a random selection from the available 
test pools retaining only those that increase the coverage 
(kill additional mutant(s)) according to the strategy 
followed. All tests that do not contribute to the coverage 
increase were eliminated as redundant in respect of the 
followed strategy. In the second leg of the experiment, 
another six tests per program were randomly selected for 
each program. Then the achieved scores according to each 
strategy were recorded. 

The produced test cases result from applying every 
strategy to the selected test objectives. As stated before, in 
order to avoid any side effects of the strategy or test 
selection method, a set of 30 test sets were generated 
according to each strategy (six tests due to each strategy 
and five times due to the repetition of the whole 
experiment). These tests were then executed against the 
various seeded program faults in order to determine their 
fault detection ability. 

V. ANALYSIS OF THE RESULTS 

The experimental results derived from the application 
of the mutation strategies are presented and analysed in 
this section.  

A. Strength Comparison 

Generally, the aim of testing criteria is to detect faults. 
The evaluation of a testing strategy should therefore, be 
based on the fault exposing ability of its produced tests. 
Thus, a comparison based on the fault detection ability 
exposes the individual strength of each of the considered 
strategies. The fault detection ability was measured based 
on the fault revealing ratio of the selected tests on a set of 
seeded faults.  



 

Figure 1.  Fault detection ability (average values) of mutation testing strategies

Figure 1 presents the average percentage of detected 
faults per testing objective and undertaken strategy. Tables 
II and III in rows “Total Faults” and “Fault Rate” record 
the total number of detected faults and their respective 
fault detection rate per strategy. 

The most interesting aspect of the above graph is that 
strong mutation always detects more faults than any other 
strategy and in the majority of the cases this situation is 
significant. Although second order strategies score high 
but not as high as strong mutation, indicating a high 
effectiveness, their behavior is similar to the one recorded 
for Rand 50% and 60%.  

With respect to the second order strategies there 
appears to be a high variation on their fault detection 
effectiveness. Consequently, it can be argued that there is 
not any single strategy that could be clearly characterized 
as being the most effective. In general, more effective ones 
seem to be the “SameNode” and “SU_F2Last” strategies. 
The “SameNode” strategy scores best in two of the eight 
test objectives and scores almost best in three other cases.  
The “SU_F2Last” scores best in two cases and almost best 
in two others. On a total number of detected faults basis 
(tables II and III), “SameNode” and “SU_F2Last” detects 
80.73% and 79.86% of the total number of introduced 
faults respectively. These scores are approximately higher 
than those achieved by the remainder of the strategies by 
approximately 1-5%.  It must be noted that when second 
order strategies are applied to a unit level, they provide 
better results when compared to the ones obtained by their 
application to the entire program. 

B. Cost Comparison 

One of the key issues for selecting a testing strategy, 
apart from its effectiveness, is its practicality. In view of 
this, in the present study a measurement of various cost 
factors was established in order to provide an insight of the 
application cost of the respective strategies. The overall 

application cost of a testing strategy may depend on many 
factors. Of these factors the usually regarded as more 
influencing are the number of produced mutants, the 
number of equivalent mutants and the number of the 
produced test cases per each strategy.  

Figure 2 presents the average test size required by the 
considered strategies. Although this factor does not 
represent the true effort or cost of creating those tests, this 
measure can give a first indication about the strategies 
application cost. From the graph it can be seen that strong 
mutation requires by far more tests than all the alternative 
strategies. One additional point is that “SameNode” 
strategy also requires a considerable number of test cases 
compared to the other second order mutation testing ones.  

When comparing strategies on the basis of producing 
approximately the same number of mutants, such as Rand 
50% and 60% against second order mutation testing cases, 
it can observed that second order strategies require 
significantly fewer test cases. This fact suggests that 
second order strategies are in general less costly with 
respect to the phases of test generation and execution. 

Another aspect that affects the overall application cost 
of mutation is the detection of equivalent mutants. This is 
an also well known undecidable problem and thus, the 
equivalent mutants’ identification should be considered as 
a manual effort activity. Figure 3 presents the average 
number of possible equivalent mutants produced by the 
different strategies. It is noted that these sets of mutants 
are those left alive after their execution with all available 
test cases and hence their actual number should be even 
smaller. Nonetheless, the most surprising finding of the 
present study is the remarkable reduction of equivalent 
mutants attributed to the second order strategies. 
Randomly selecting two mutants from the set of first order 
ones, results in a chance of selecting two equivalent ones 
as approximately 5%≈(22.5)

2
% (chance of selecting one 

equivalent – approximately 22.5%). This provides a 



random selection possibility of the produced second order 
equivalent mutants. As it can be observed, in table III, the 
top two rows (“Mutants” and “Equivalents”), that referred 
to strategies  “RandMix”, “DiffOp”, “First2Last” and 
“SU_DiffOp” can be used to deduce on average 5-6% of 
equivalent mutants while “SameNode”, “SameUnit” and 
“SU_F2Last” produce on average approximately 17%, 
9.7%, and 8.6% respectively. Comparing these results with 
the random selection value of 5%, it becomes evident that 
the equivalent mutants are more strategy depended (with 
respect to the same unit strategies) than random selection 
depended. It must be noted that the second order strategies 
produce approximately 80-90% less equivalent mutants, 
compared to strong mutation, with the exception of 
“SameNode” strategy which produced 60% less equivalent 
mutants. 

The high reduction on produced equivalent mutants 
can be considered as one of the major contributions of the 
second order mutation testing strategies. The ability of 
these strategies to heuristically reduce in an a priory basis 
the number of introduced equivalent mutants should result 
in considerable savings with respect to the required effort. 
The achieved savings should reduce not only the required 
manual effort but also the required computational 
resources for mutant execution. As pointed in [5] the 
equivalent mutants, contrary to non equivalent ones, 
should be executed against all produced test ceases. Thus, 
as computed in [5] the computational resources needed by 
mutation strategies are greatly influenced by the existence 
of equivalent mutants.  

The application of second order strategies in general 
results in mutant sets approximately half the size of those 
produced by strong mutation. The only exception seems to 
be the two strategies based on “Different Operators”, 
which produced a size approximately equal to 70% of the 
one for strong mutation. However, this handicap is 
counterbalanced by the ability of both above strategies, 

being able to create the least percentage of equivalent 
mutants compared to the remaining ones.  

The presented results suggest that among the various 
second order mutation testing strategies, the “SameNode” 
strategy clearly achieves and by far the worst reduction. 
“First2Last” and “RandMix” strategies produce a 7-9% 
less equivalent mutants when applied to the same unit than 
to the whole program, whereas the behavior of the 
“Different Operators” strategies is indifferent.   

C. Cost – Benefit Comparison 

The question that is raised here is: “which is the best 
strategy to be selected?”. To answer this question, there is 
a need to combine all the cost and benefit factors related to 
each of the strategies. Such an attempt is made based on 
two cost-benefit measures. The first measure here refereed 
to as “Test Effectiveness”, is defined as follows: 

𝑇𝑒𝑠𝑡 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =  
𝑁𝑜. 𝑜𝑓 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠

𝑁𝑜. 𝑜𝑓 𝐸𝑥𝑝𝑜𝑠𝑒𝑑 𝐹𝑎𝑢𝑙𝑡𝑠


The “Test Effectiveness” measure has been widely 
used in the literature [15], [16], [28]. This measure reflects 
the application cost of the testing process as being 
proportional to the test size which is dominated by the 
following cost factors: test production, test execution, test 
oracle generation and verification cost. However, a major 
burden of mutation testing is not accounted for. This is due 
to the presence of equivalent mutants. Consequently, there 
is a definite need to include their presence as also 
commented by Weyuker [28]. This measure assumes that 
equivalent mutants’ identification requires approximately 
additional relative effort with test data generation. This 
effort is twofold: first as it is costly because of the human 
intervention for their identification and second as it has 
been proven by Offutt and Pan [13] that it forms an 
instance of the feasible path problem which is the basis of 
most test data generation techniques. 

 

Figure 2.  Number of Tests (average values) required by mutation testing strategies



 

Figure 3.  Number of possible (average values) of equivalent mutants produced by the mutation testing strategies 

Additionally, in [29] a practical transformation of the 
killing mutants’ problem to a covering branches one was 
suggested. As a consequence the identification of 
equivalent mutants forms a “harder” activity rather than 
the one of producing tests. Thus an alternative measure 
referred to as “CostEffectiveness” is defined as follows: 

𝐶𝑜𝑠𝑡𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
𝑁𝑜. 𝑜𝑓 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠 + 𝑁𝑜. 𝑜𝑓 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑀𝑢𝑡𝑎𝑛𝑡𝑠 

𝑁𝑜. 𝑜𝑓 𝐸𝑥𝑝𝑜𝑠𝑒𝑑 𝐹𝑎𝑢𝑙𝑡𝑠
 

Tables II and III present the results of the considered 
strategies for first and second order respectively. Both 
tables record in their columns the measurements per each 
strategy while their rows represent details concerning the 
number of mutants, the number of equivalent mutants, the 
total number of required tests, the number of exposed 
faults, the fault detection rate and the two previously 
mentioned measures “Test-Effectiveness” and “Cost-
Effectiveness”. It is noted that the number of mutants 
(killable and equivalent ones) has been produced 
incrementally by considering all five experiment 
repetitions. Additionally, the total tests and faults were 
obtained by the addition of the 30 (6 tests per strategy x 5 
experiment repetitions) produced test sets and their 
respective ability of detecting faults.  

The most interesting aspects of these results are based 
on the cost benefit perspective. It can be noted that the two 
adopted measures provide different results. According to 
the “Test-Effectiveness” measure the overall most 
appropriate ones are the Rand 10%, 20%, 30% and 
“SU_F2Last” approaches. If the second order strategies 
were to be considered, the best choice appears to be the 
“SU_F2Last” whereas the worst the “SameNode”. 
Another notable result is that strong mutation, detects by 
far the majority of faults but at a high cost (it requires a 
large number of test cases). Consequently, scoring for this 

reason by far worse than its rivals with respect to “Test-
Effectiveness”.  

TABLE II.  RESULTS OF FIRST ORDER MUTATION TESTING STRATEGIES  

 

Strong 

Mutation 

Rand 

10% 

Rand 

20% 

Rand 

30% 

Rand 

40% 

Rand 

50% 

Rand 

60% 

Mutants  62714 6280 12552 18823 25093 31372 37649 

Equivalents  14100 1423 2779 4104 5628 7048 8576 

Tests Cases 10880 4404 5938 7103 7909 8732 9051 

Total Faults 4453 3288 3736 3886 3986 4144 4193 

Fault Rate 87.31% 64.47% 73.25% 76.20% 78.16% 81.25% 82.22% 

Test-

Effectiveness 
2.4433 1.3394 1.5894 1.8278 1.9842 2.1071 2.1586 

Cost- 

Effectiveness 
5.6097 1.7722 2.3332 2.8839 3.3961 3.8079 4.2039 

 

The “Cost-Effectiveness” measure produces a different 
picture. In this respect only the Rand 10% and 20% 
strategies score better than the second order ones. The 
Rand 30% now scores worse than five of the second order 
strategies. The best choice among the second order 
strategies is the “RandMix” approach, while the remaining 
of the strategies with the exception of “SameNode” score 
quite similarly.  

Evaluating the above results with respect to their cost 
benefit contribution two points are clear. First, strong 
mutation falls considerably behind every other considered 
strategy. Perhaps the most appropriate choice in this 
respect seems to be the Rand 10%. Second, there is no 
second order strategy that is a clear winner among the 
other similar strategies, as they all score similarly. This 
implies that the application of the strategies should detect 
similar number of faults for a given amount of effort. As 
the application of the strategies may result in different 
amounts of effort, a more demanding strategy will detect 
more faults than a less demanding one. The above are 
direct results that are derived by adhering to the “Test-
Effectiveness” and “Cost-Effectiveness” ratios.   



TABLE III.  RESULTS OF SECOND ORDER MUTATION TESTING STRATEGIES  

 
Rand 

Mix 
DiffOp 

First 

2Last 

Same 

Node 

Same 

Unit 

SU_ 

F2Last 

SU_ 

DiffOp 

Mutants 31362 45355 31362 32821 31620 31620 45407 

Equivalents 1817 2024 1724 5605 3067 2710 2140 

Tests Cases 7552 7589 7335 8828 7926 7604 7576 

Total Faults 3943 3906 3804 4117 3987 4073 4027 

Fault Rate 77.31% 76.59% 74.59% 80.73% 78.18% 79.86% 78.96% 

Test-

Effectiveness 
1.9153 1.9429 1.9282 2.1443 1.9880 1.8669 1.8813 

Cost- 

Effectiveness 
2.3761 2.4611 2.3814 3.5057 2.7572 2.5323 2.4127 

D. Comparison Based on Strong Mutation 

All the mutation testing approximations were proposed 
as alternatives to full strong mutation. Their construction 
was motivated by the practical need to reduce the strong 
mutation overheads. In this study, all obtained results were 
presented on a comparable basis among all considered 
strategies. The interest of the present section also focuses 
on the benefits recorded by the application of the strategies 
with respect to full strong mutation. Along these lines 
figure 4 depicts all four considered measures when 
compared against strong mutation.    

Figure 4 is composed of four parts. The North West 
part corresponds to the loss on fault detection ability 
resulting by using the approximation alternatives. The 
North East part corresponds to the mutants’ proportion 
reduction achieved with respect to the produced number of 
mutants. The South West part displays the required test set 
size reductions. The remaining part presents the achieved 
reductions of the introduced equivalent mutants. These 
graphs present all the application aspects of the 
approximation strategies compared to strong mutation.  

Table IV records complementary details considering 
the fault detection loss of the examined strategies against 

strong mutation. Specifically, it records the fault loss in the 
best and worst cases of the experiment (higher and lower 
fault rate of the produced test sets according to the 
examined strategies). These values may be also considered 
as ranges of the expected fault loss of these strategies. 
Thus, it can be observed that the ranges of the first order 
strategies are reduced as the sampling percentage 
increases. High loss ranges are recorded for all second 
order strategies. The interesting point here is that the 
“SU_F2Last” strategy results in the smallest recorded loss 
for the worst case scenario while also resulting to a small 
range in comparison to the remaining strategies. 

The graphs of figure 4 suggest that a considerable loss 
on the fault detection ability is observed in both first and 
second order strategies. This loss is more evident with the 
Rand 10% strategy. Remarkable savings are produced by 
the second order mutation testing strategies for all the cost 
measures, leading to the conclusion that they could be 
used as valid alternatives to strong mutation. The results 
also suggest that when using second order mutation testing 
strategies, the most appropriate choice appears be the 
“SU_F2Last” strategy as: a) it provides the best fault 
detection rate in the worst case, b) the smallest fault 
detection range (8.47%) and c) with reasonable test 
demands compared to the rest of the strategies. 

TABLE IV.  FAULT LOSS OF MUTATION TESTING STRATEGIES 

 
 

Rand 

10% 

Rand 

20% 

Rand 

30% 

Rand 

40% 

Rand 

50% 

Rand 

60% 

Worst  44.93% 26.81% 26.81% 17.39% 16.67% 17.39% 

Best  10.43% 7.98% 8.59% 4.29% 3.07% 1.84% 

 

Rand 

Mix 
DiffOp 

First 

2Last 

Same 

Node 

Same 

Unit 

SU_ 

F2Last 

SU_ 

DiffOp 

Worst 21.01% 21.74% 22.46% 20.29% 23.19% 15.22% 17.39% 

Best 5.52% 6.75% 7.36% 2.45% 4.29% 6.75% 4.29% 

 

 

Figure 4.  Achieved reductions by mutation testing strategies compared to Strong mutation  



 

Figure 5.  Mutation Score variation between mutation testing strategies 

E. Mutation Score Variation Comparison 

Comparisons made so far, were based on cost and 
effective factors produced by the considered strategies. In 
order to achieve a straightforward comparison between the 
strategies, one additional experiment was also carried out. 
For this reason, same data sets were used. This 
differentiates this experiment from the one in the first leg, 
as it uses the same sets of data in an attempt to measure 
their behavior. Whereas, in the previous experiment the 
sets of data were intrinsic to the strategies. By doing so, all 
strategies’ achieved scores were compared among them. 
Six different tests sets were constructed based on a random 
selection of tests from the test sample. Each set was sized 
according to each program’s average size of strong 
mutation tests, as derived by the first leg experiment. 

Figure 5 presents the average mutation scores achieved 
by applying the six test sets to each program. From the 
graph it can be observed that first order strategies provide 
lower scores than all the second order ones. This is 
somehow expected as the second order strategies provide 
weaker measurements over the first order ones as this was 
also demonstrated in the previous experiment. Among the 
second order ones, the “SameNode” strategy indicates a 
similar score rate as “Strong mutation”. For the remaining 
of the second order strategies the coverage scores vary 
according to each program. The overall average recorded 
scores are 91.12%, 95.69%, 95.52%, 95.40%, 92.48%, 
95.03%, 94.85%, and 95.75% for the “Strong mutation”, 
“RandMix”, “DiffOp”, “First2Last”, “SameNode”, 
“SameUnit”, “SU_F2Last”, “SU_DiffOp” strategies 
respectively. The coverage behavior of the first order 
strategies is somehow similar to the coverage recorded for 
strong mutation as it was expected. It must be noted that 
the discrepancies between strong mutation and second 
order mutation coverage do not necessarily indicate the 
ability of the one strategy over the other. Conclusively, it 
can be argued that a lower coverage, as in the case of 

strong mutation, suggests that more tests are needed to 
increase the coverage, this contributing to the 
thoroughness of this method rather than its weakness.  

VI. THREATS TO VALIDITY 

All empirical studies involving software lack of being 
representative and thus the external validity of the present 
study should also be uncertain. Nevertheless, all the test 
objectives used in the present study constitute industrial 
programs widely used in the literature.  

One threat to the internal validity of this work can be 
related to the manual seeding of faults and generation of 
test cases. As the programs, test cases and faults were not 
purposely built for the present research, since being 
provided together with the programs, they should have a 
limited influence on the present results. Other issues 
affecting the reported results could be based on the choice 
of mutation operators. Different operators might produce 
different results. However, the selected set of operators 
forms a set of mutants embodying all language operators. 
Additionally, when employing techniques based on 
random facts as in the present work random selection of 
mutants or pairs, may contain a risk of low effectiveness. 
Thus, the tester should be aware of these risks. The present 
work gives some indication about these risks with the best 
and worst case scenarios presented in previous section. 
Nonetheless, this matter is left open for future research. 

The aim of the study was to investigate the feasibility 
and the impact of the various strategies in comparison to 
strong mutation. For all these reasons the authors believe 
that the threats to the validity of the results obtained are 
negligible. 

VII. CONCLUSION AND FUTURE WORK 

This paper presents an empirical study for using 
mutation testing and its first and second order mutation 
variants. The findings of this study suggest that these 



mutation variants can provide a significant reduction on 
various cost factors. Specifically, the results obtained 
indicate that first order strategies are generally more 
effective at detecting faults, than their second order rivals 
however, at a greater cost. Second order strategies can 
drastically decrease the number of equivalent mutants 
introduced and provide significant savings to both 
numbers of produced mutants and required test cases. 

The results suggest that a reduction of approximately 
80% to 90% of the equivalent mutants generated by 
second order strategies can be tackled. Moreover, second 
order strategies can accomplish reductions of roughly 30% 
of the required test cases with approximately 10% or less 
on the loss of their fault detection ability compared to 
strong mutation. Randomly selecting a percentage of first 
order mutants results in a fault loss ranging from 26% to 
6% for the methods Rand 10% to 60%. Their test 
reductions range from 60% to 17%. 

The experiment suggests that second order strategies 
succeed in significantly reducing the number of both 
produced and equivalent mutants. Additional savings are 
recorded according to the required test cases with little 
fault detection loss. Surprisingly, second order strategies 
can achieve approximately equal fault detection 
effectiveness as also do Rand 40% and 50% strategies 
(around 80%) with additional savings of over a 7% test 
case reduction and approximately a 25% reduction on the 
number of the produced equivalent mutants in comparison 
to the other two. This fact indicates that second order 
strategies can be in general more cost effective than first 
order ones. Nevertheless, the choice between second order 
strategies is not apparent. The one that appears here as 
having a slight advantage is the SU_F2Last strategy.   

Future work is directed towards conducting more 
experiments in order to statistically validate the claims of 
the present findings. Currently, additional second order 
strategies are also examined.  

ACKNOWLEDGMENT 

Thanks are due to Professor José Carlos Maldonado for 
providing us the Proteum mutation testing tool. The authors 
would like to thank the anonymous referees for their useful 
suggestions that helped improving the present paper. This 
work is supported by the Basic Research Funding (PEVE 
2010) program of the Athens University of Economics and 
Business.  

REFERENCES 

[1] A. J. Offutt and D. S. Lee, “An Empirical Evaluation of Weak 
Mutation”, IEEE Trans. on Soft. Eng., vol. 20, 1994, pp. 337-344. 

[2] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, C. Zapf, “An 
experimental Determination of Sufficient Mutation Operators”, 
ACM -TOSEM. vol. 5, 1996, pp. 99-118. 

[3] W. E. Wong, “On Mutation and Data Flow,” PhD Thesis, Purdue 
University, West Lafayette, Indiana, 1993. 

[4] J. Offutt and H. Untch, “Mutation 2000: Uniting the Orthogonal”, 
Mutation 2000: Mutation Testing in the Twentieth and the Twenty 
First Centuries, pp. 45-55, 2000. 

[5]  E. S. Mresa and L. Bottaci, “Efficiency of Mutation Operators and 
Selective Mutation Strategies: An Empirical Study,” Softw. Test., 
Verif. Reliab. , 1999, vol. 9, pp. 205-232. 

[6] E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi, “Toward 
the determination of sufficient mutant operators for C,” Softw. 
Test., Verif. Reliab. , 2001, vol. 11, pp. 113–136. 

[7] M. Polo, M. Piattini, I.G. Rodriguez, “Decreasing the cost of 
mutation testing with second-order mutants”, Softw. Test., Verif. 
Reliab.,  vol. 19, 2009, pp. 111-131. 

[8] Y. Jia and M. Harman, “Higher Order Mutation Testing”, 
Information and Software Technology, vol.51, 2009, pp. 1379-
1393. 

[9] R. G. Hamlet, “Testing program with the aid of a compiler”, IEEE 
Trans. Softw. Eng., vol. 3, 1977, pp. 279-290.  

[10] R. A. Demilo, R. J. Lipton, and F. D. Sayward, “Hints on test data 
selection: Help for the practicing programmer”, IEEE Computer, 
vol. 11, 1978, pp. 34-41. 

[11] A. J. Offutt, “Investigations of the Software Testing Coupling 
Effect,” ACM -TOSEM, vol. 1, 1992, pp. 5–20. 

[12] W. B. Langdon, M. Harman, Y. Jia, "Multi Objective Higher Order 
Mutation Testing with Genetic Programming”, Taic-part, 2009. 

[13] J. Offutt and J. Pan, “Detecting equivalent mutants and the feasible 
path problem”, Softw. Test. Verif. Reliab., vol.7, 1997, pp.165-192. 

[14] B. J. M. Gruen, D. Schuler, and A. Zeller, “The impact of 
equivalent mutants,” in Mutation ’09, 2009. 

[15] J. H. Andrews, L. C. Briand, Y. Labiche, and A. Siami Namin. 
Using mutation analysis for assessing and comparing testing 
coverage criteria. IEEE Trans. Softw. Eng., vol. 32, 2006, pp.608-
624. 

[16] N. Li, U. Praphamontripong and J. Offutt, "An Experimental 
Comparison of Four Unit Test Criteria: Mutation, Edge-Pair, All-
Uses and Prime Path Coverage," in Mutation ’09, 2009. 

[17] J. H. Andrews, L. C. Briand, and Y. Labiche. Is Mutation an 
Appropriate Tool for Testing Exeperiments? Proc. ICSE, 2005. 

[18] H. Do, G. Rothermel and S. Elbaum, “Infrastructure support for 
controlled experimentation with software testing and regression 
testing techniques,” Oregon State University, Corvallis, OR, USA, 
Technical report 04-06-01, January, 2004. 

[19] M. Hutchins, H. Froster, T. Goradia and T. Ostrand, “Experiments 
on the Effectiveness of Dataflow and Controlflow-Based Test 
Adequacy Criteria,” Proc. ICSE, 1994. 

[20] G. Rothermel and M. J. Harrold, “Empirical Studies of a Safe 
Regression Test Selection Technique,” IEEE Trans. on Soft. Eng., 
vol. 24, 1998, pp. 401-419. 

[21] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter and G. 
Rothermel, “An Empirical Study of Regression Test Selection 
Techniques,” ACM -TOSEM, vol. 10, 2001, pp. 184-208. 

[22] P. G. Frankl and O. Iakounenko, “Further Empirical Studies of test 
Effectiveness,” Proc. FSE, 1998. 

[23] F. I. Vokolos and P. G. Frankl, “Empirical evaluation of the textual 
differencing regression testing technique,” Proc. ICSM, 1998. 

[24] M. Harder, J. Mellen and M. D. Ernst, “Improving Test Suites via 
Operational Abstraction”, Proc. ICSE, 2003. 

[25] M. E. Delamaro and J. C. Maldonado. “Proteum – a tool for the 
assessment of test adequacy for C programs”. Proc. PCS, 1996. 

[26] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W. Hsu, E. W. 
Krauser, R. J. Martin, A. P. Mathur, and E. Spafford, “Design of 
Mutant Operators for the C Programming Language,” Purdue 
University, West Lafayette, Indiana, Technique Report SERC-TR-
41-P, March 1989. 

[27] A. S. Namin, J. H. Andrews, and D. J. Murdoch, “Sufficient 
Mutation Operators for Measuring Test Effectiveness”, Proc. 
ICSE, 2008. 

[28] E. J. Weyuker, More Experience with Data Flow Testing, IEEE 
Trans. on Soft. Eng., vol.19, 1993, pp.912-919. 

[29] M. Papadakis, N. Malevris: An Effective Path Selection Strategy 
for Mutation Testing, Proc. APSEC, 2009. 


