
An Empirical Evaluation of the First and Second Order Mutation Testing Strategies

Mike Papadakis and Nicos Malevris

Department of Informatics, Athens University of Economics and Business

Athens, Greece

{mpapad, ngm}@aueb.gr

Abstract—Various mutation approximation techniques have

been proposed in the literature in order to reduce the

expenses of mutation. This paper presents results from an

empirical study conducted for first and second order

mutation testing strategies. Its scope is to evaluate the

relative application cost and effectiveness of the different

mutation strategies. The application cost was based: on the

number of mutants, the equivalent ones and on the number

of test cases needed to expose them by each strategy. Each

strategy’s effectiveness was evaluated by its ability to expose

a set of seeded faults. The results indicate that on the one

hand the first order mutation testing strategies can be in

general more effective than the second order ones. On the

other hand, the second order strategies can drastically

decrease the number of the introduced equivalent mutants,

generally forming a valid cost effective alternative to

mutation testing.

Keywords—mutation testing, higher order mutation

I. INTRODUCTION

Software testing has always been considered as the
main method for revealing errors in an attempt to
determine the level of confidence required before the
software’s prerelease time. This activity requires the
generation of test data. The quality of these data sets is
measured by their ability to examine certain software
features. Measures of this kind identify the level of the
occurrences of certain software features that are
successfully exercised. Different features give rise to the
definition of various criteria. Their evaluation requires the
software execution with actual data in order to exercise
specific elements, such as statements, branches, paths etc.
Such being the case coverage criteria can be regarded as
the vehicle for appropriate test data generation for
increasing the software’s level of confidence.

Mutation testing is a well known fault detection
technique used for producing high quality test cases.
Mutation has a widespread reputation of being one of the
most effective but together most expensive software
testing techniques. In order to reduce the application cost
of mutation, various researchers have suggested the use of
approximation strategies. These strategies promise to
decimate the application cost while maintaining the
widespread mutation effectiveness.

Empirical results of the various mutation alternatives
have also appeared in the literature [1], [2] and [3]. These
studies clearly show a remarkable reduction of the
necessary elements required by the strategies.
Nevertheless, because of the relatively small number of
conducted studies, researchers have not gained enough
experience about the application benefits of these

strategies. This study presents extensive experimental data
on mutation testing approximation strategies. It tries to
answer the question of which strategy to use and when.
The study and its results are concentrated and presented on
a best effort basis in order to help testers choose and apply
a specific strategy as appropriate.

Mutation testing approximation strategies mainly rely
on the fact that most of the produced mutants are
redundant in the sense that they are “almost” always killed
when some others are killed. Thus, approximation
strategies try to produce in a heuristic way non redundant
mutants. Such strategies are commonly referred to in the
literature as random selection or mutant sampling [3], [4]
and selective mutation [2], [4], [5], [6]. The mutant
sampling strategies randomly apply only a specific
percentage of the whole set of introduced mutants. The
selective strategies try to apply only a subset of the whole
set of mutant operators.

Recently, new mutation testing strategies have been
suggested based on the notion of higher order mutants [7],
[8]. In this approach mutants are constructed based on the
application of two or more mutants at a time. Preliminary
investigation [7] seems to suggest their limited impact on
the testing quality, while recording important savings in
required test elements. Although promising, these
strategies have not been adequately assessed empirically or
compared to others. This forms the main issue of the
present research.

The aim of the present study is to measure the impact
of the fault detection ability and the main cost factors of
the various mutation approximations, for both first and
second order mutation methods, with respect to a given set
of mutants. Additionally, to compare the mutation testing
strategies in a cost-benefit fashion. The above intentions
were studied in a conducted experiment involving a set of
moderate size industrial programs written in the C
programming language. The performed experiment tries to
provide an insight of applying second order mutation
testing strategies in practice.

The obtained results suggest that the second order
strategies can achieve remarkable savings in relation to the
introduced equivalent mutants when compared to the first
order ones. Also noticeable is that they necessitate a small
number of test cases without sacrificing their fault
detection ability.

II. MUTATION TESTING STRATEGIES

Mutation testing is a powerful fault-based testing
technique. It was initially introduced by Hamlet [9] and
DeMillo, Lipton and Sayward [10] and forms the focus of

this paper. Generally mutation analysis embeds faults into
the testing objectives and assesses the performed test
quality based on the exposition ratio of the embedded
faults. Obviously, both the testing effort and quality are
mainly influenced by the size and the quality of the
introduced fault set. This section presents mutation testing
strategies dealing with this issue.

A. Mutation Testing Criterion

Usually, mutation testing induces syntactical
alterations of the code under test producing mutant
versions of the examined code. Each program version is
called mutated version. These syntactic changes are
performed based on a set of syntactic rules called mutation
operators. Test cases are used to execute the candidate set
of mutated versions with the goal of distinguishing them
from the original one. A mutant is said to be killed if there
is a test that distinguishes its output from the output of the
original program whereas, it is said to be equivalent if
there are not such distinguishing inputs. Assessing tests
with the killing mutants’ ratio is considered as a measure
of the quality of the testing thoroughness. More details
about mutation testing can be found in [4].

B. First Order Mutation Testing Strategies

A significant portion of the mutation testing demands
is influenced by the generation and execution of the
candidate set of mutants. By considering a small sample
(percentage say x%) of mutants, a significant cost
reduction can be achieved [3]. Empirical studies [3] have
shown that a selection of 10% of mutants results in a 16%
loss of the fault detection ability of the produced test sets
compared to full mutation testing. In the present study, the
considered strategies referred to as first order strategies
(Rand x%) select the x% portion of the initial mutant set,
where x = 10, 20, 30, 40, 50 and 60. The reason behind the
use of these sets of mutants in the present experiment is
twofold. The first reason is to revalidate the findings of
previous studies by their application to larger cases and
different programming language constructs. The second is
to attempt to answer the question of whether it is the
number of mutants or the adopted strategies that influence
the effectiveness of the first and second order mutation
methods.

C. Second Order Mutation Testing Strategies

Another approximation approach for reducing the
mutation testing effort was proposed in [7], based on the
notion of second order mutants. According to this
approach, given a set of first order mutants, a reduced set
of pairs constructed from them can be produced. Every
mutant program is embedded with two faults at a time and
every first order mutant is contained in at least one second
order mutated program. As a consequence, the number of
mutants obtained is close to half the size of the original
mutant suite [7].

Different strategies of how the first order mutants
should be combined can then be deduced. In the study of
Polo et al. [7] three strategies were proposed. These

strategies are: “RandomMix”, “DifferentOperators” and
“LastToFirst”. In the first strategy the combination is made
by randomly selecting the pairs of first order mutants using
each mutant once. In the second one, every combined pair
uses mutants produced by different operators. In the
“LastToFirst” strategy the mutants were combined
according to the order they were handled by the underlying
tool. The mutant pairs are constructed based on the
combination of the first one with the ultimate one, the
second with the penultimate, etc [7]. The experimental
results obtained by the above strategies were very
encouraging, as a high reduction on the number of
equivalent mutants was recorded. Additionally, the
obtained results and the conducted risk analysis [7]
suggested that there should be a small loss on the quality
of the second order test suites. This conclusion needs
further investigation as it was conducted with a few and
small sized programs. Thus, the determination of the
impact on the testing quality when using second order
mutation strategies in comparison to first order ones forms
the main objective of this paper.

In the present experiment the first two of the above
strategies were adopted as proposed in [7] and referred to
as “RandMix” and “DiffOp” respectively. The third
strategy (“LastToFirst”) was application depended to the
underlying tool and thus was not considered. Additionally,
five new strategies were produced. These strategies were
influenced by the previously proposed ones. The first of
these named “FirstToLast” denoted as “First2Last”, orders
the first order mutants according to their respective
statement appearance in the objective source code. The
mutant pairs are then constructed based on the
combination of the first with the ultimate mutant, the
second with the penultimate one, etc. Of the remaining
four, the “SameNode” combines the mutants by selecting
them from the same basic block; the “SameUnit” selects
the mutant pairs from the same program unit; the “Same
Unit FirstToLast” denoted as “SU_F2Last” and “Same
Unit Different Operators” denoted as “SU_DiffOp”, select
candidate mutants based on the use of the “First2Last” and
“DiffOp” approaches by applying them individually to
each program unit.

III. RELATED WORK

Higher order mutation was initially introduced and
examined in the context of mutant coupling effect [11]. In
this study, higher order mutants (HOMs) were considered
in order to examine if the produced tests by first order
mutants (FOMs) are capable enough to detect the majority
of second or third order mutants. The results obtained were
in favor of the above statement. The idea of using HOMs
for testing purposes was introduced by Polo et al. [7] as
described above. This idea was further developed by Jia
and Harman [8] who introduced the concept of subsuming
HOMs. They advocate that a subsuming HOM is harder to
kill than the FOMs from which it is constructed of and
thus, it should be preferable to replace the FOMs with a
single HOM. “Harder to kill” signifies that tests able to kill
a HOM are also capable of killing each one of the FOMs

from which it is constructed too. Also in an additional
research work [12] the HOMs are constructed with the aim
of both producing harder to kill mutants and also
syntactically similar to the original program. All studies
[7], [8] and [12] focus on reducing the required effort by
mutation. This is accomplished by reducing the number of
the candidate and equivalent mutants.

Detecting equivalent mutants is a well known
undecidable problem. Thus, only heuristic methods can be
applied, such as those proposed by Offutt and Pan [13].
Gruen et al. [14] suggested an additional attempt to bypass
this problem by focusing on specific (with high impact on
program execution) likely to be non equivalent mutants.

A comparison between various mutation strategies has
been attempted by Offutt and Lee [1] in order to compare
weak mutation variants. The conducted experiment
suggested that weak mutation forms a viable alternative to
mutation and also that it should be applied by using the
statement or the basic block component strategy. Similar
experiments were undertaken in the context of randomly
selecting mutants [3] and selective mutation [2], [4], [5],
[6] as described in previous sections.

Experiments using mutation, such as [15] and [16], a
comparison between various testing criteria is recorded.
The comparison was performed by relating cost to the
respective number of required tests and effectiveness to
the number of faults revealed. In [15] the fault detection
rate was shown to be similar to the mutants’ killable rate
and thus mutants were considered for modeling the criteria
effectiveness instead. Whereas in [16] the comparison was
based on the number of revealed manually seeded faults.
However, these experiments do not consider second order
mutants and therefore, not directly comparable with the
present study.

IV. EXPERIMENTATION

This section describes the details about the conducted
experiments including experimental description, the test
objectives used and the various artifacts of the test design,
containing the mutation operators used, the test cases and
the faults seeded in the test objectives.

In the experimental description that follows, the term
strategy is used in order to refer to the various mutation
approaches considered in the present experiment. The term
fault is used to represent either manually seeded faults or
real faults used to model the fault detection ability of the
various strategies. The generated faults by the mutation
operators are referred to as mutants.

A. Definition of the Experiment

The objective of this experiment is to compare the
application benefits of various first and second order
mutation testing strategies. The comparison is made based
on measuring the various cost factors introduced by the
testing process, such as the number of the produced
mutants, the number of equivalent ones and the number of
test cases needed to satisfy each mutation variant criterion.
Also, the number of the exposed faults by each strategy is
used to evaluate its relative strength. The experiment uses

eight programs, for which sets of faults and large pools of
test cases are available. Program details are given in the
“Subject Programs” section (IV.B). For each test objective
used, sets of mutant programs were generated according to
each mutation testing strategy. Mutation operators and
strategy details are given in section “Mutation Tool and
Operators Used” (IV.C). Test suites were then constructed
by selecting tests at random from the test pools utilizing
the policies of the mutation strategies. All tests sets were
then executed against the available faulty versions of the
test programs recording the exposed fault rates.
Comparison was then made based on the various cost and
effectiveness factors of the considered strategies. The full
details of the experimental regime are given in the section
“The Experimental Regime” (IV.D).

B. Selected Programs

The selected objectives are composed of eight
programs written in the C programming language. They
have all been used in similar previous studies such as [8],
[15], [17] and [18]. The first seven, form the well known
Siemens suite while the eighth one is the Space program
developed at the European Space Agency. All program
details are presented in Table I.

The seven Siemens programs and their associate faulty
versions and test cases have been initially used by
Hutchins et al. [19] to compare structural criteria. These
were modified, extended and used by Rothermel and
Harrold [20] and Graves et al. [21] in later studies. The
faulty program versions were introduced by researchers
with the aim of producing realistic fault versions [19].

The last program (Space program) was initially used in
the studies of Frankl et al. [22] and probably constitutes
the most realistic object of the present study. This program
is associated with 38 “real” faulty versions identified and
corrected “during testing and the operative use of the
program” as reported in [23]. The advantage of this
program against to the other seven is that its faults are real
ones. Thus, they should give a more realistic simulation on
the fault detection ability of the produced test suites. All
programs were chosen because of their extensive use in the
literature and their availability along with their artifacts
and can be found in the Subject Infrastructure Repository
(SIR) at the University of Nebraska-Lincoln [18].

The test cases associated with each object program
were constructed based on both black-box and white-box
testing techniques such as: random, category-partition, all
statements, all edges and all definition-use pairs.

TABLE I. TEST PROGRAMS DETAILS

Program
Number of

LOC

Number of

Test Cases

Number of

Faults

Schedule 296 2650 9

Schedule2 263 2710 10

Tcas 137 1608 41

Totinfo 281 1052 23

Printtokens 343 4130 7

Printtokens2 355 4115 10

Replace 513 5542 32

Space 5905 13585 38

In Harder et al. [24], details of the construction of these
test sets are given. The population of the available test
cases consists of a relatively large number of test cases.
These were not necessarily constructed for killing mutants
and thus make the sampling population rather realistic.

C. Mutation Tool and Operators Used

In order to apply the first and second order mutation
testing strategies, the Proteum mutation testing system, by
Delamaro and Maldonado [25], was used. Proteum uses 77
operators all implemented according to Agrawal et al.
[26]. This set of operators requires huge computational
resources in order to generate mutants and execute them.
In order to complete the present experiment with
reasonable resources two general reductions were used.
First, a restriction on the considered mutant operators was
made. All mutant operators provided under the general
class of “operators” [26] were considered. This set of
mutants is composed of 44 operators which either alter or
insert programming language operators where appropriate.
Second, for the space program, one additional restriction
was imperative. This was due to the vast number of
produced mutants (22,500 mutants). Therefore, a 10% of
them were selected, based on their production order. Thus,
every 10

th
 produced mutant was considered. It is noted that

a different set of first order mutants was constructed in
every experiment repetition (all the experiments were
repeated five times). This approach has also been
undertaken by other studies such as [15] and [17].

The aim of the present paper is to measure the impact
on the quality of the produced test cases when using
approximation strategies over an initial mutant set. All the
undertaken approximations rely only on an initial set of
mutants (common to all used strategies) which form the
basis of the experimental comparison. Thus, the use of the
above restrictions should affect the test quality only of the
initial set mutant sets.

The second order mutants were constructed based on
the combined use of the first order ones. For the
experimental needs, a prototype framework was built in
order to collect the first order mutants and construct the
various second order ones according to each strategy (see
section “mutation testing strategies”-II). It is noted that all
second order mutants were produced based on the
considered set of first order ones and that every first order
mutant is embodied in at least one pair of second order
mutants for every undertaken strategy.

D. The Experimental Regime

The results reported in the following sections are
derived based on the application of the various first and
second order mutation testing strategies. Generally, the
experiment has two legs. In the first leg, the analysis
procedure followed was initially to generate a set of
mutants and their respective test cases according to each
strategy. In the second leg, tests were chosen at random.
Then for both legs a comparison based on various cost
factors in combination to the fault exposing ability of the
generated test sets was made.

Initially, all mutants were generated and compiled in
order to determine the mutant candidate set for each
strategy. In order to avoid any bias introduced by the
random selection or combination of mutants all the
experiments were repeated independently five times. All
mutant sets were then executed against all available test
cases. All live mutants were eliminated from the mutants’
sets as being equivalent. The elimination is based on an
approximation method described below. Although this
approach does not guarantee their equivalence, it was
chosen in order to complete the experiment with
reasonable resources. It is believed that this approximation
fulfils the general goals of the present study as there
should be minimal chances for non-equivalent mutants to
be left alive after their exercise with such a huge and high
quality data test set. Additionally, such an approximation
method has also been used in similar studies such as [17].
Nevertheless, all eliminated mutants form sets (one set per
strategy) of likely to be equivalent mutant sets. It should
be noted that each of these sets contains the maximum
possible number of equivalent mutants and thus, in the
results obtained their actual number should be even
smaller than the one reported. In the rest of the present
paper they will be referred to as equivalent mutants.

Initially, six sets of test cases per strategy were
generated based on a random selection from the available
test pools retaining only those that increase the coverage
(kill additional mutant(s)) according to the strategy
followed. All tests that do not contribute to the coverage
increase were eliminated as redundant in respect of the
followed strategy. In the second leg of the experiment,
another six tests per program were randomly selected for
each program. Then the achieved scores according to each
strategy were recorded.

The produced test cases result from applying every
strategy to the selected test objectives. As stated before, in
order to avoid any side effects of the strategy or test
selection method, a set of 30 test sets were generated
according to each strategy (six tests due to each strategy
and five times due to the repetition of the whole
experiment). These tests were then executed against the
various seeded program faults in order to determine their
fault detection ability.

V. ANALYSIS OF THE RESULTS

The experimental results derived from the application
of the mutation strategies are presented and analysed in
this section.

A. Strength Comparison

Generally, the aim of testing criteria is to detect faults.
The evaluation of a testing strategy should therefore, be
based on the fault exposing ability of its produced tests.
Thus, a comparison based on the fault detection ability
exposes the individual strength of each of the considered
strategies. The fault detection ability was measured based
on the fault revealing ratio of the selected tests on a set of
seeded faults.

Figure 1. Fault detection ability (average values) of mutation testing strategies

Figure 1 presents the average percentage of detected
faults per testing objective and undertaken strategy. Tables
II and III in rows “Total Faults” and “Fault Rate” record
the total number of detected faults and their respective
fault detection rate per strategy.

The most interesting aspect of the above graph is that
strong mutation always detects more faults than any other
strategy and in the majority of the cases this situation is
significant. Although second order strategies score high
but not as high as strong mutation, indicating a high
effectiveness, their behavior is similar to the one recorded
for Rand 50% and 60%.

With respect to the second order strategies there
appears to be a high variation on their fault detection
effectiveness. Consequently, it can be argued that there is
not any single strategy that could be clearly characterized
as being the most effective. In general, more effective ones
seem to be the “SameNode” and “SU_F2Last” strategies.
The “SameNode” strategy scores best in two of the eight
test objectives and scores almost best in three other cases.
The “SU_F2Last” scores best in two cases and almost best
in two others. On a total number of detected faults basis
(tables II and III), “SameNode” and “SU_F2Last” detects
80.73% and 79.86% of the total number of introduced
faults respectively. These scores are approximately higher
than those achieved by the remainder of the strategies by
approximately 1-5%. It must be noted that when second
order strategies are applied to a unit level, they provide
better results when compared to the ones obtained by their
application to the entire program.

B. Cost Comparison

One of the key issues for selecting a testing strategy,
apart from its effectiveness, is its practicality. In view of
this, in the present study a measurement of various cost
factors was established in order to provide an insight of the
application cost of the respective strategies. The overall

application cost of a testing strategy may depend on many
factors. Of these factors the usually regarded as more
influencing are the number of produced mutants, the
number of equivalent mutants and the number of the
produced test cases per each strategy.

Figure 2 presents the average test size required by the
considered strategies. Although this factor does not
represent the true effort or cost of creating those tests, this
measure can give a first indication about the strategies
application cost. From the graph it can be seen that strong
mutation requires by far more tests than all the alternative
strategies. One additional point is that “SameNode”
strategy also requires a considerable number of test cases
compared to the other second order mutation testing ones.

When comparing strategies on the basis of producing
approximately the same number of mutants, such as Rand
50% and 60% against second order mutation testing cases,
it can observed that second order strategies require
significantly fewer test cases. This fact suggests that
second order strategies are in general less costly with
respect to the phases of test generation and execution.

Another aspect that affects the overall application cost
of mutation is the detection of equivalent mutants. This is
an also well known undecidable problem and thus, the
equivalent mutants’ identification should be considered as
a manual effort activity. Figure 3 presents the average
number of possible equivalent mutants produced by the
different strategies. It is noted that these sets of mutants
are those left alive after their execution with all available
test cases and hence their actual number should be even
smaller. Nonetheless, the most surprising finding of the
present study is the remarkable reduction of equivalent
mutants attributed to the second order strategies.
Randomly selecting two mutants from the set of first order
ones, results in a chance of selecting two equivalent ones
as approximately 5%≈(22.5)

2
% (chance of selecting one

equivalent – approximately 22.5%). This provides a

random selection possibility of the produced second order
equivalent mutants. As it can be observed, in table III, the
top two rows (“Mutants” and “Equivalents”), that referred
to strategies “RandMix”, “DiffOp”, “First2Last” and
“SU_DiffOp” can be used to deduce on average 5-6% of
equivalent mutants while “SameNode”, “SameUnit” and
“SU_F2Last” produce on average approximately 17%,
9.7%, and 8.6% respectively. Comparing these results with
the random selection value of 5%, it becomes evident that
the equivalent mutants are more strategy depended (with
respect to the same unit strategies) than random selection
depended. It must be noted that the second order strategies
produce approximately 80-90% less equivalent mutants,
compared to strong mutation, with the exception of
“SameNode” strategy which produced 60% less equivalent
mutants.

The high reduction on produced equivalent mutants
can be considered as one of the major contributions of the
second order mutation testing strategies. The ability of
these strategies to heuristically reduce in an a priory basis
the number of introduced equivalent mutants should result
in considerable savings with respect to the required effort.
The achieved savings should reduce not only the required
manual effort but also the required computational
resources for mutant execution. As pointed in [5] the
equivalent mutants, contrary to non equivalent ones,
should be executed against all produced test ceases. Thus,
as computed in [5] the computational resources needed by
mutation strategies are greatly influenced by the existence
of equivalent mutants.

The application of second order strategies in general
results in mutant sets approximately half the size of those
produced by strong mutation. The only exception seems to
be the two strategies based on “Different Operators”,
which produced a size approximately equal to 70% of the
one for strong mutation. However, this handicap is
counterbalanced by the ability of both above strategies,

being able to create the least percentage of equivalent
mutants compared to the remaining ones.

The presented results suggest that among the various
second order mutation testing strategies, the “SameNode”
strategy clearly achieves and by far the worst reduction.
“First2Last” and “RandMix” strategies produce a 7-9%
less equivalent mutants when applied to the same unit than
to the whole program, whereas the behavior of the
“Different Operators” strategies is indifferent.

C. Cost – Benefit Comparison

The question that is raised here is: “which is the best
strategy to be selected?”. To answer this question, there is
a need to combine all the cost and benefit factors related to
each of the strategies. Such an attempt is made based on
two cost-benefit measures. The first measure here refereed
to as “Test Effectiveness”, is defined as follows:

𝑇𝑒𝑠𝑡 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
𝑁𝑜. 𝑜𝑓 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠

𝑁𝑜. 𝑜𝑓 𝐸𝑥𝑝𝑜𝑠𝑒𝑑 𝐹𝑎𝑢𝑙𝑡𝑠

The “Test Effectiveness” measure has been widely
used in the literature [15], [16], [28]. This measure reflects
the application cost of the testing process as being
proportional to the test size which is dominated by the
following cost factors: test production, test execution, test
oracle generation and verification cost. However, a major
burden of mutation testing is not accounted for. This is due
to the presence of equivalent mutants. Consequently, there
is a definite need to include their presence as also
commented by Weyuker [28]. This measure assumes that
equivalent mutants’ identification requires approximately
additional relative effort with test data generation. This
effort is twofold: first as it is costly because of the human
intervention for their identification and second as it has
been proven by Offutt and Pan [13] that it forms an
instance of the feasible path problem which is the basis of
most test data generation techniques.

Figure 2. Number of Tests (average values) required by mutation testing strategies

Figure 3. Number of possible (average values) of equivalent mutants produced by the mutation testing strategies

Additionally, in [29] a practical transformation of the
killing mutants’ problem to a covering branches one was
suggested. As a consequence the identification of
equivalent mutants forms a “harder” activity rather than
the one of producing tests. Thus an alternative measure
referred to as “CostEffectiveness” is defined as follows:

𝐶𝑜𝑠𝑡𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
𝑁𝑜. 𝑜𝑓 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠 + 𝑁𝑜. 𝑜𝑓 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑀𝑢𝑡𝑎𝑛𝑡𝑠

𝑁𝑜. 𝑜𝑓 𝐸𝑥𝑝𝑜𝑠𝑒𝑑 𝐹𝑎𝑢𝑙𝑡𝑠

Tables II and III present the results of the considered
strategies for first and second order respectively. Both
tables record in their columns the measurements per each
strategy while their rows represent details concerning the
number of mutants, the number of equivalent mutants, the
total number of required tests, the number of exposed
faults, the fault detection rate and the two previously
mentioned measures “Test-Effectiveness” and “Cost-
Effectiveness”. It is noted that the number of mutants
(killable and equivalent ones) has been produced
incrementally by considering all five experiment
repetitions. Additionally, the total tests and faults were
obtained by the addition of the 30 (6 tests per strategy x 5
experiment repetitions) produced test sets and their
respective ability of detecting faults.

The most interesting aspects of these results are based
on the cost benefit perspective. It can be noted that the two
adopted measures provide different results. According to
the “Test-Effectiveness” measure the overall most
appropriate ones are the Rand 10%, 20%, 30% and
“SU_F2Last” approaches. If the second order strategies
were to be considered, the best choice appears to be the
“SU_F2Last” whereas the worst the “SameNode”.
Another notable result is that strong mutation, detects by
far the majority of faults but at a high cost (it requires a
large number of test cases). Consequently, scoring for this

reason by far worse than its rivals with respect to “Test-
Effectiveness”.

TABLE II. RESULTS OF FIRST ORDER MUTATION TESTING STRATEGIES

Strong

Mutation

Rand

10%

Rand

20%

Rand

30%

Rand

40%

Rand

50%

Rand

60%

Mutants 62714 6280 12552 18823 25093 31372 37649

Equivalents 14100 1423 2779 4104 5628 7048 8576

Tests Cases 10880 4404 5938 7103 7909 8732 9051

Total Faults 4453 3288 3736 3886 3986 4144 4193

Fault Rate 87.31% 64.47% 73.25% 76.20% 78.16% 81.25% 82.22%

Test-

Effectiveness
2.4433 1.3394 1.5894 1.8278 1.9842 2.1071 2.1586

Cost-

Effectiveness
5.6097 1.7722 2.3332 2.8839 3.3961 3.8079 4.2039

The “Cost-Effectiveness” measure produces a different
picture. In this respect only the Rand 10% and 20%
strategies score better than the second order ones. The
Rand 30% now scores worse than five of the second order
strategies. The best choice among the second order
strategies is the “RandMix” approach, while the remaining
of the strategies with the exception of “SameNode” score
quite similarly.

Evaluating the above results with respect to their cost
benefit contribution two points are clear. First, strong
mutation falls considerably behind every other considered
strategy. Perhaps the most appropriate choice in this
respect seems to be the Rand 10%. Second, there is no
second order strategy that is a clear winner among the
other similar strategies, as they all score similarly. This
implies that the application of the strategies should detect
similar number of faults for a given amount of effort. As
the application of the strategies may result in different
amounts of effort, a more demanding strategy will detect
more faults than a less demanding one. The above are
direct results that are derived by adhering to the “Test-
Effectiveness” and “Cost-Effectiveness” ratios.

TABLE III. RESULTS OF SECOND ORDER MUTATION TESTING STRATEGIES

Rand

Mix
DiffOp

First

2Last

Same

Node

Same

Unit

SU_

F2Last

SU_

DiffOp

Mutants 31362 45355 31362 32821 31620 31620 45407

Equivalents 1817 2024 1724 5605 3067 2710 2140

Tests Cases 7552 7589 7335 8828 7926 7604 7576

Total Faults 3943 3906 3804 4117 3987 4073 4027

Fault Rate 77.31% 76.59% 74.59% 80.73% 78.18% 79.86% 78.96%

Test-

Effectiveness
1.9153 1.9429 1.9282 2.1443 1.9880 1.8669 1.8813

Cost-

Effectiveness
2.3761 2.4611 2.3814 3.5057 2.7572 2.5323 2.4127

D. Comparison Based on Strong Mutation

All the mutation testing approximations were proposed
as alternatives to full strong mutation. Their construction
was motivated by the practical need to reduce the strong
mutation overheads. In this study, all obtained results were
presented on a comparable basis among all considered
strategies. The interest of the present section also focuses
on the benefits recorded by the application of the strategies
with respect to full strong mutation. Along these lines
figure 4 depicts all four considered measures when
compared against strong mutation.

Figure 4 is composed of four parts. The North West
part corresponds to the loss on fault detection ability
resulting by using the approximation alternatives. The
North East part corresponds to the mutants’ proportion
reduction achieved with respect to the produced number of
mutants. The South West part displays the required test set
size reductions. The remaining part presents the achieved
reductions of the introduced equivalent mutants. These
graphs present all the application aspects of the
approximation strategies compared to strong mutation.

Table IV records complementary details considering
the fault detection loss of the examined strategies against

strong mutation. Specifically, it records the fault loss in the
best and worst cases of the experiment (higher and lower
fault rate of the produced test sets according to the
examined strategies). These values may be also considered
as ranges of the expected fault loss of these strategies.
Thus, it can be observed that the ranges of the first order
strategies are reduced as the sampling percentage
increases. High loss ranges are recorded for all second
order strategies. The interesting point here is that the
“SU_F2Last” strategy results in the smallest recorded loss
for the worst case scenario while also resulting to a small
range in comparison to the remaining strategies.

The graphs of figure 4 suggest that a considerable loss
on the fault detection ability is observed in both first and
second order strategies. This loss is more evident with the
Rand 10% strategy. Remarkable savings are produced by
the second order mutation testing strategies for all the cost
measures, leading to the conclusion that they could be
used as valid alternatives to strong mutation. The results
also suggest that when using second order mutation testing
strategies, the most appropriate choice appears be the
“SU_F2Last” strategy as: a) it provides the best fault
detection rate in the worst case, b) the smallest fault
detection range (8.47%) and c) with reasonable test
demands compared to the rest of the strategies.

TABLE IV. FAULT LOSS OF MUTATION TESTING STRATEGIES

Rand

10%

Rand

20%

Rand

30%

Rand

40%

Rand

50%

Rand

60%

Worst 44.93% 26.81% 26.81% 17.39% 16.67% 17.39%

Best 10.43% 7.98% 8.59% 4.29% 3.07% 1.84%

Rand

Mix
DiffOp

First

2Last

Same

Node

Same

Unit

SU_

F2Last

SU_

DiffOp

Worst 21.01% 21.74% 22.46% 20.29% 23.19% 15.22% 17.39%

Best 5.52% 6.75% 7.36% 2.45% 4.29% 6.75% 4.29%

Figure 4. Achieved reductions by mutation testing strategies compared to Strong mutation

Figure 5. Mutation Score variation between mutation testing strategies

E. Mutation Score Variation Comparison

Comparisons made so far, were based on cost and
effective factors produced by the considered strategies. In
order to achieve a straightforward comparison between the
strategies, one additional experiment was also carried out.
For this reason, same data sets were used. This
differentiates this experiment from the one in the first leg,
as it uses the same sets of data in an attempt to measure
their behavior. Whereas, in the previous experiment the
sets of data were intrinsic to the strategies. By doing so, all
strategies’ achieved scores were compared among them.
Six different tests sets were constructed based on a random
selection of tests from the test sample. Each set was sized
according to each program’s average size of strong
mutation tests, as derived by the first leg experiment.

Figure 5 presents the average mutation scores achieved
by applying the six test sets to each program. From the
graph it can be observed that first order strategies provide
lower scores than all the second order ones. This is
somehow expected as the second order strategies provide
weaker measurements over the first order ones as this was
also demonstrated in the previous experiment. Among the
second order ones, the “SameNode” strategy indicates a
similar score rate as “Strong mutation”. For the remaining
of the second order strategies the coverage scores vary
according to each program. The overall average recorded
scores are 91.12%, 95.69%, 95.52%, 95.40%, 92.48%,
95.03%, 94.85%, and 95.75% for the “Strong mutation”,
“RandMix”, “DiffOp”, “First2Last”, “SameNode”,
“SameUnit”, “SU_F2Last”, “SU_DiffOp” strategies
respectively. The coverage behavior of the first order
strategies is somehow similar to the coverage recorded for
strong mutation as it was expected. It must be noted that
the discrepancies between strong mutation and second
order mutation coverage do not necessarily indicate the
ability of the one strategy over the other. Conclusively, it
can be argued that a lower coverage, as in the case of

strong mutation, suggests that more tests are needed to
increase the coverage, this contributing to the
thoroughness of this method rather than its weakness.

VI. THREATS TO VALIDITY

All empirical studies involving software lack of being
representative and thus the external validity of the present
study should also be uncertain. Nevertheless, all the test
objectives used in the present study constitute industrial
programs widely used in the literature.

One threat to the internal validity of this work can be
related to the manual seeding of faults and generation of
test cases. As the programs, test cases and faults were not
purposely built for the present research, since being
provided together with the programs, they should have a
limited influence on the present results. Other issues
affecting the reported results could be based on the choice
of mutation operators. Different operators might produce
different results. However, the selected set of operators
forms a set of mutants embodying all language operators.
Additionally, when employing techniques based on
random facts as in the present work random selection of
mutants or pairs, may contain a risk of low effectiveness.
Thus, the tester should be aware of these risks. The present
work gives some indication about these risks with the best
and worst case scenarios presented in previous section.
Nonetheless, this matter is left open for future research.

The aim of the study was to investigate the feasibility
and the impact of the various strategies in comparison to
strong mutation. For all these reasons the authors believe
that the threats to the validity of the results obtained are
negligible.

VII. CONCLUSION AND FUTURE WORK

This paper presents an empirical study for using
mutation testing and its first and second order mutation
variants. The findings of this study suggest that these

mutation variants can provide a significant reduction on
various cost factors. Specifically, the results obtained
indicate that first order strategies are generally more
effective at detecting faults, than their second order rivals
however, at a greater cost. Second order strategies can
drastically decrease the number of equivalent mutants
introduced and provide significant savings to both
numbers of produced mutants and required test cases.

The results suggest that a reduction of approximately
80% to 90% of the equivalent mutants generated by
second order strategies can be tackled. Moreover, second
order strategies can accomplish reductions of roughly 30%
of the required test cases with approximately 10% or less
on the loss of their fault detection ability compared to
strong mutation. Randomly selecting a percentage of first
order mutants results in a fault loss ranging from 26% to
6% for the methods Rand 10% to 60%. Their test
reductions range from 60% to 17%.

The experiment suggests that second order strategies
succeed in significantly reducing the number of both
produced and equivalent mutants. Additional savings are
recorded according to the required test cases with little
fault detection loss. Surprisingly, second order strategies
can achieve approximately equal fault detection
effectiveness as also do Rand 40% and 50% strategies
(around 80%) with additional savings of over a 7% test
case reduction and approximately a 25% reduction on the
number of the produced equivalent mutants in comparison
to the other two. This fact indicates that second order
strategies can be in general more cost effective than first
order ones. Nevertheless, the choice between second order
strategies is not apparent. The one that appears here as
having a slight advantage is the SU_F2Last strategy.

Future work is directed towards conducting more
experiments in order to statistically validate the claims of
the present findings. Currently, additional second order
strategies are also examined.

ACKNOWLEDGMENT

Thanks are due to Professor José Carlos Maldonado for
providing us the Proteum mutation testing tool. The authors
would like to thank the anonymous referees for their useful
suggestions that helped improving the present paper. This
work is supported by the Basic Research Funding (PEVE
2010) program of the Athens University of Economics and
Business.

REFERENCES

[1] A. J. Offutt and D. S. Lee, “An Empirical Evaluation of Weak
Mutation”, IEEE Trans. on Soft. Eng., vol. 20, 1994, pp. 337-344.

[2] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, C. Zapf, “An
experimental Determination of Sufficient Mutation Operators”,
ACM -TOSEM. vol. 5, 1996, pp. 99-118.

[3] W. E. Wong, “On Mutation and Data Flow,” PhD Thesis, Purdue
University, West Lafayette, Indiana, 1993.

[4] J. Offutt and H. Untch, “Mutation 2000: Uniting the Orthogonal”,
Mutation 2000: Mutation Testing in the Twentieth and the Twenty
First Centuries, pp. 45-55, 2000.

[5] E. S. Mresa and L. Bottaci, “Efficiency of Mutation Operators and
Selective Mutation Strategies: An Empirical Study,” Softw. Test.,
Verif. Reliab. , 1999, vol. 9, pp. 205-232.

[6] E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi, “Toward
the determination of sufficient mutant operators for C,” Softw.
Test., Verif. Reliab. , 2001, vol. 11, pp. 113–136.

[7] M. Polo, M. Piattini, I.G. Rodriguez, “Decreasing the cost of
mutation testing with second-order mutants”, Softw. Test., Verif.
Reliab., vol. 19, 2009, pp. 111-131.

[8] Y. Jia and M. Harman, “Higher Order Mutation Testing”,
Information and Software Technology, vol.51, 2009, pp. 1379-
1393.

[9] R. G. Hamlet, “Testing program with the aid of a compiler”, IEEE
Trans. Softw. Eng., vol. 3, 1977, pp. 279-290.

[10] R. A. Demilo, R. J. Lipton, and F. D. Sayward, “Hints on test data
selection: Help for the practicing programmer”, IEEE Computer,
vol. 11, 1978, pp. 34-41.

[11] A. J. Offutt, “Investigations of the Software Testing Coupling
Effect,” ACM -TOSEM, vol. 1, 1992, pp. 5–20.

[12] W. B. Langdon, M. Harman, Y. Jia, "Multi Objective Higher Order
Mutation Testing with Genetic Programming”, Taic-part, 2009.

[13] J. Offutt and J. Pan, “Detecting equivalent mutants and the feasible
path problem”, Softw. Test. Verif. Reliab., vol.7, 1997, pp.165-192.

[14] B. J. M. Gruen, D. Schuler, and A. Zeller, “The impact of
equivalent mutants,” in Mutation ’09, 2009.

[15] J. H. Andrews, L. C. Briand, Y. Labiche, and A. Siami Namin.
Using mutation analysis for assessing and comparing testing
coverage criteria. IEEE Trans. Softw. Eng., vol. 32, 2006, pp.608-
624.

[16] N. Li, U. Praphamontripong and J. Offutt, "An Experimental
Comparison of Four Unit Test Criteria: Mutation, Edge-Pair, All-
Uses and Prime Path Coverage," in Mutation ’09, 2009.

[17] J. H. Andrews, L. C. Briand, and Y. Labiche. Is Mutation an
Appropriate Tool for Testing Exeperiments? Proc. ICSE, 2005.

[18] H. Do, G. Rothermel and S. Elbaum, “Infrastructure support for
controlled experimentation with software testing and regression
testing techniques,” Oregon State University, Corvallis, OR, USA,
Technical report 04-06-01, January, 2004.

[19] M. Hutchins, H. Froster, T. Goradia and T. Ostrand, “Experiments
on the Effectiveness of Dataflow and Controlflow-Based Test
Adequacy Criteria,” Proc. ICSE, 1994.

[20] G. Rothermel and M. J. Harrold, “Empirical Studies of a Safe
Regression Test Selection Technique,” IEEE Trans. on Soft. Eng.,
vol. 24, 1998, pp. 401-419.

[21] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter and G.
Rothermel, “An Empirical Study of Regression Test Selection
Techniques,” ACM -TOSEM, vol. 10, 2001, pp. 184-208.

[22] P. G. Frankl and O. Iakounenko, “Further Empirical Studies of test
Effectiveness,” Proc. FSE, 1998.

[23] F. I. Vokolos and P. G. Frankl, “Empirical evaluation of the textual
differencing regression testing technique,” Proc. ICSM, 1998.

[24] M. Harder, J. Mellen and M. D. Ernst, “Improving Test Suites via
Operational Abstraction”, Proc. ICSE, 2003.

[25] M. E. Delamaro and J. C. Maldonado. “Proteum – a tool for the
assessment of test adequacy for C programs”. Proc. PCS, 1996.

[26] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W. Hsu, E. W.
Krauser, R. J. Martin, A. P. Mathur, and E. Spafford, “Design of
Mutant Operators for the C Programming Language,” Purdue
University, West Lafayette, Indiana, Technique Report SERC-TR-
41-P, March 1989.

[27] A. S. Namin, J. H. Andrews, and D. J. Murdoch, “Sufficient
Mutation Operators for Measuring Test Effectiveness”, Proc.
ICSE, 2008.

[28] E. J. Weyuker, More Experience with Data Flow Testing, IEEE
Trans. on Soft. Eng., vol.19, 1993, pp.912-919.

[29] M. Papadakis, N. Malevris: An Effective Path Selection Strategy
for Mutation Testing, Proc. APSEC, 2009.

