
Effective Fault Localization via Mutation Analysis: A
Selective Mutation Approach

Mike Papadakis
SnT, University of Luxembourg

Luxembourg, Luxembourg

michail.papadakis@uni.lu

Yves Le Traon
SnT, University of Luxembourg

Luxembourg, Luxembourg

yves.letraon@uni.lu

ABSTRACT
When programs fail, developers face the problem of identifying
the code fragments responsible for this failure. To this end, fault
localization techniques try to identify suspicious program places
(program statements) by observing the spectrum of the failing and
passing test executions. These statements are then pointed out to
assist the debugging activity. This paper considers mutation-based
fault localization and suggests the use of a sufficient mutant set to
locate effectively the faulty statements. Experimentation reveals
that mutation-based fault localization is significantly more
effective than current state-of-the-art fault localization techniques.
Additionally, the results show that the proposed approach is
capable of reducing the overheads of mutation analysis. In
particular the number of mutants to be considered is reduced to
20% with only a limited loss on the method’s effectiveness.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing tools

General Terms
Verification.

Keywords
Program debugging, mutation analysis, fault localization.

1. INTRODUCTION
Software faults are the main cause of software failures.
Experiencing such failures results in a great economic impact
especially when it involves safety critical applications. To reduce
such incidences, software developers try to test their software in
order to find most of the software defects. However, testing only
concerns the detection of software defects and not their correction.
Therefore, when detecting a software fault, developers need to
identify the faulty program parts in the application’s source code
and ultimately fix them.

The identification of the defective program places is usually
referred to as the fault localization process and denotes the
problem of localizing software faults given a set of tests. This
constitutes a hard problem and results to be one of the most costly
processes of the debugging activity. Researchers have put a great
deal of effort to automate the fault localization activity and thus,

to reduce its expenses. In this area, the main direction of research
is to advise developers regarding the most suspicious program
locations, which could have led to the experienced failures.

Many debugging approaches have been proposed and studied
by the literature in order to tackle this problem. Delta Debugging
[7] tries to identify the program states that lead to failures.
Spectrum-based or coverage-based techniques [15, 26] collect
program traces of both the passing and failing executions and then
assign to program statements a suspiciousness value that
represents a probability that these statements are faulty. To this
end, many program entities, i.e. coverage entities, have been used.
Entities such as statements [1, 15] branches [17] du-pairs [18] and
possible combinations of them [26, 30] have been proposed and
used in assisting fault localization. Empirical studies show that
spectrum-based fault localization approaches not only help
developers [3, 15] but also assist other activities such as the
automated program repair [10].

Mutation analysis explores the programs’ behavior by
injecting artificial defects into its code. The main idea behind this
approach is that by running the artificially defective programs,
some valuable information can be gained. This information can be
useful in evaluating the quality of the testing activity [21] or in
automating various tasks such as the automated oracle creation [9]
or fault localization [25]. The technique is powerful since it forces
to test the programs with respect to their behavior and not with
respect to code coverage [9]. Mutation analysis requires a vast
number of defects to be injected and executed with actual test
cases. Thus, scalability issues are raised. To deal with this
problem, researchers have identified small but sufficient
categories of defects that should be applied. We refer to these
approaches as selective mutation.

Recently, a fault localization approach based on mutation
analysis has been proposed [22]. We call this approach as the
mutation-based or simple as the mutation approach. Despite the
fact that mutation analysis was originally proposed for testing,
mutation analysis has been shown to be helpful in various
contexts and applications [21]. This is the case for fault
localization where initial results [22, 25] show that the mutation-
based approach can localize faults significantly better than the
statement-based one. The intuition behind the mutation approach
is that when failing test cases achieve to kill mutants while the
passing ones leave them live; their location indicates a location
responsible for the test failure. Following these lines, the present
paper considers the mutation-based approach proposed by
Papadakis and Le Traon [22, 25] and compares it with state-of-
the-art spectrum-based fault localization methods, like [26, 30].
The results are promising since they show that the mutation-based
fault localization outperforms the examined approaches.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’14, March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03…$15.00.

Although effective, applying mutation analysis requires vast
computational resources [19]. To deal with this problem,
researchers have proposed various mutation variant techniques,
like mutant sampling [23, 28] and selective mutation [19, 20]. A
recent work demonstrates that the use of selective mutation can
lead to practical solutions applicable to real world applications
[9]. Going a step further, the present paper adapts this technique
i.e. selective mutation, to the fault localization problem. To the
authors’ knowledge this is the first study aiming at identifying
sufficient mutants in the context of fault localization. Empirical
results show that the selective mutation approach proposed here is
capable of reducing the number of involved mutants by 80%
without loss on the fault localization accuracy. Therefore, the
computational demands of the method are drastically reduced.

In summary, the present work empirically answers the
following questions:

a) How mutation-based fault localization compares with
state-of-the-art spectrum-based fault localization techniques?

b) Is it possible to form a selective mutation approach to
support the fault localization activity?

The remainder of the paper is organized as follows: Section 2
presents some background material regarding mutation analysis
and fault localization. Sections 3 and 4 respectively detail the
conducted experiment and its findings. Sections 5 and 6 discuss
the benefits of the proposed approach and its relation to the
literature. Finally, Section 7 concludes the paper and identifies
possible future directions.

2. MUTATION ANALYSIS AND FAULT
LOCALIZATION
The present section introduces briefly mutation analysis and the
spectrum-based approaches studied in the conducted experiment.

2.1 Mutation Analysis
Mutation works by making syntactic changes into the source code
of the program under test. This practice results in producing
various program versions, called mutants, each one containing a
single syntactic difference with the original program version. The
defective program versions are produced based on a set of simple
syntactic rules, called mutant operators. The value of the
approach comes from the execution of the mutant programs with
test cases. By comparing the output of the mutant programs with
the output of the original one, the ability of the test cases to
expose defects is assessed. A mutant is called killed if its
execution with a test case results in different output from the
original. It is called live in the opposite case.

Generally, to kill a mutant or to trigger a fault, a test case
must execute the faulty program place; it must cause an infection
on the program state (at this point) and must propagate this
infection to the programs’ output. This last requirement referred to
as propagation requirement, signifies the need to propagate the
internal error state to the output of the program. It is this
requirement that differentiates mutation analysis from the
coverage based testing techniques. Researchers have provided
evidence that mutants behave like real faults [4]. Therefore,
killing mutants results in testing thoroughly the tested program.

Applying the technique requires answering the question of
which mutant operators to use. Several studies try to answer this

question [13]. Most of them try to construct all the possible simple
syntactic changes [2]. Others try to use the experience of the
researchers in defining them. The present paper considers a
comprehensive set of mutant operators, defined based on all the
construct elements of the C language [2]. This results in a vast
number of mutants and thus, a smaller set of them is needed. To
deal with this issue, the present study identifies a small but
representative set of mutant operators to apply. Such an approach
is usually referred to as selective mutation [13, 20].

2.2 Spectrum-based fault localization
Several fault localization approaches have been suggested based
on the various different spectrum types. Thus, program statements
[1, 15], program branches [17], du-pair [18] and possible
combinations of them [26, 30] have been used. These techniques
collect the dynamic coverage information of the executed test
cases and try to associate it with the experienced failures. Thus,
the program entities (coverage types) covered by each one of the
executed tests are recorded. Depending on whether the test cases
cover specific entities when they fail or when they pass, they are
related to the pass or the failure of the test.

The underlying idea of these approaches is that entities
covered mostly by failing tests and rarely by passed tests is more
likely to be responsible for a failure than entities covered mostly
by passed tests. In other words, they try to compute a value that
represents the probability that a specific entity is faulty. This
value is calculated for all the program entities and it is called
suspiciousness value. Then, the programmer has to inspect the
most suspicious statements in order to find the program place that
is responsible for the failure. To this end, these methods produce a
priority list of program statements. The list orders the statements
according to their suspiciousness values, i.e. in a decreasing order
from the most suspicious statement to the least one. The specific
position of a statement in this list is called rank.

The question that it is raised here is how to calculate the
suspiciousness values and which coverage entities are more
appropriate to use. There are various ways to compute the
suspiciousness values of a specific coverage entity. The present
work uses the Ochiai formula [1] in the lines suggested by
Santelices et al. [26]. The Ochiai formula is defined as:

𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠 𝑒

=
𝑓𝑎𝑖𝑙𝑒𝑑(𝑒)

𝑡𝑜𝑡𝑓𝑎𝑖𝑙𝑒𝑑(𝑓𝑎𝑖𝑙𝑒𝑑 𝑒 + 𝑝𝑎𝑠𝑠𝑒𝑑(𝑒))
 (1)

In this formula totfailed represents the number of test cases
that fail, failed(e) represents the number of test cases that cover
the code entity e and fail and passed(e) represents the number of
test cases that cover the code entity e and pass.

By using different coverage entities (e), different approaches
can be formed [26]. Furthermore, by combining the values of the
different entities additional approaches can be made. Among all
the possible combinations, the present study focuses on the most
representative ones as found in [26] and [30]. The following
subsections detail these approaches.

2.2.1 Statement-based Fault Localization
Performing fault localization using program statements, i.e. using
the Ochiai formula (1) [1] with code entities e representing
program statements, forms a simple and straightforward

suspicious calculation. This approach is among the first and most
popular ones in literature. Its choice is based on its simplicity and
popularity. Additionally, most of the studies do consider it. This is
the case for the previous studies using mutation analysis [22, 25].
However, more effective techniques exist. They are described in
the following subsections.

2.2.2 Combination of Coverage Types, avg-SBD
Fault Localization
Assigning suspiciousness values using coverage entities, the
program statements, the branches and the du-pairs i.e. code
entities e representing program statements, branches and du-pairs
in (1), results in calculating three different values per program
statement. By combining these values a better suspiciousness
ranking can be made [26]. Following the lines suggested in [26],
each program statement is assigned with the average
suspiciousness value of the three different entities (statements,
branches and du-pairs). We call this approach as avg-SBD.
Further details regarding avg-SBD can be found in [26].

2.2.3 Combination of Coverage Types, Loupe Fault
Localization
Different combinations of multiple spectra types can give several
approaches to assist fault localization. Instead of combining like
in the avg-SBD i.e. based on the average value of the different
spectra (suspiciousness) values, an alternative would be to build
different models for each type of spectra. Then, the best solution
can be selected. Such an approach has been introduced in [30].
This approach first computes the suspiciousness of all program
branches and all program data dependencies using the ochiai
formula (1). Then the suspiciousness values of the program
statements are calculated based on a) program predicates and b)
on data dependencies. For each program predicate, case a), the
suspiciousness values are calculated by using the absolute
difference between the true and false branch. For all the program
statements, case b), a suspiciousness value is computed based on
the average value of all the data dependencies of the statement.
The overall suspiciousness values assigned to a statement is the
maximum value of the a) and b). We call this approach Loupe.
Further details regarding Loupe can be found in [30].

2.2.4 Mutation-based Fault Localization
Mutation-based fault localization differs from the other
approaches since it relies on mutants [22]. Instead of trying to
associate the execution of program statements with a failure, it
tries to associate the killing of mutants with test failures or passes.
Therefore, suspiciousness values can be calculated by using the
Ochiai formula (1) with code entities e to be mutants. Thus, in the
equation (1), the totfailed represents the number of test cases that
fail, the failed(e) represents the number of test cases that kill the
mutant e and fail and passed(e) represents the number of test
cases that kill the mutant e and pass. Further details regarding the
mutation approach can be found in [22, 25].

3. EXPERIMENT PROCEDURE
This section details the conducted experiment. It defines the
objectives of the study; it presents details regarding the selected
subjects i.e. their test suites and faulty program versions and then,
it introduces the tools employed by the study. Finally, a
description of the performed analysis is given along with the
identified threats to the validity of the experiment.

3.1 Definition of the Experiment
The present experiment investigates a) whether mutation-based
fault localization is more effective at localizing faults than state-
of-the-art spectrum fault localization techniques and b) to
determine whether it is possible to select a small set of mutant
operators to support the fault localization activity. By showing the
point a), the superiority of the mutation-based fault localization is
established. Similarly, with respect to point b), the method can be
turned into practice by showing that a small sufficient set of
mutant operators exists.
The above issues form the following two research questions:

RQ1: How does the mutation-based fault localization
compares with the current state-of-the-art techniques?

RQ2: How effective are the proposed selective mutation
approaches?

3.2 Subject Programs
The conduced study involves the seven programs composing the
well-known Siemens suite [12]. These programs have been
extensively used in fault localization studies such [7, 15, 17, 22,
30]. They are also well suited for the purposes of the present study
since they are written in C and they are publicly available along
with their associated faults and tests.

Several researchers have produced the associated test suites
by using various black and white box techniques. Therefore, the
test suites are capable to cover all program statements, all
program edges and all definition-use pairs. Additional details
regarding the construction of the test suites can be found in
Harder et al. [11].

Table 1 records the details regarding the Siemens suite. It
includes the number of lines of code, the size of the test pool, the
number of mutants and the number of the examined faults per
program. These programs were chosen due to a) they contain most
of the language constructs used in large industrial studies [19] and
b) mutation analysis can be appropriately applied on them since
they are not of a very big size. Thus, all C mutant operators can be
used, similar to the study of Siami Namin et al. [19]. The use of
all mutant operators is vital for identifying a sufficient set of
operators. This is due to the need of identifying sets with similar
effectiveness with the whole set of mutants.

3.3 Utilized Tools
The work presented here involves a) fault localization using

the state-of-the-art approaches, b) mutation analysis and c) fault
localization using mutation analysis. We used three prototypes to
accomplish these steps. For the step a) we employed the tool
implementation of [30] which implements all the three examined
fault localization approaches. To perform the step b) the Proteum1
mutation analysis tool [8] was used. This is a well-known tool
widely used in mutation testing experiments like [13, 19, 23]. For
the step c) we developed a prototype on top of the Wet [31]
framework similar to the prototype implementation used on the
step a). This choice was mandatory in order to compare the
approaches in a fair way. Since Wet records executable code and
execution traces at machine code granularity level, this
information may influence the fault localization results. Thus, we

1 The version 2.0 of the Proteum/IM tool was used by utilizing all

the unit level operators.

Table 1. Subject Programs

Subject
Program

Lines of
Code

Test Pool
Size

Number of
Mutants

Number of
Faults

Schedule 296 2650 2241 9
Schedule2 263 2710 2980 10

Tcas 137 1608 2872 41
Totinfo 281 1052 6386 23

Printtokens 343 4130 4263 7
Printtokens2 355 4115 4681 10

Replace 513 5542 10928 32

used the same information on all the approaches. Additionally, the
same prototype was employed in the mutation-based fault
localization study [22].

3.4 Analysis Procedure
This section details the experimental procedure followed in order
to answer the defined research questions.

3.4.1 Comparison Metric
Comparing two fault localization methods requires a way to
quantify their effectiveness. We follow the usual procedure taken
in these kinds of studies based on the “Score” metric [7, 15] This
metric quantifies the effort made by programmers in order to
identify faulty statements by evaluating the percentage of
statements that does not need examination in order to find the
faulty program location. Recall that the fault localization methods
produce a priority list based on which they examine the program
statements. Thus, the “score” metric is computed based on (2).

"Score" = !"!#$!"!#$%!& !"#"$%$&"!!!"#$
!"!#$!"!#$%!& !"!"#$#%"

 (2)

rank specifies the order of the faulty statement in the ordered list
of the fault localization. Here, it should be noted that higher
“Score” values indicate less effort and thus, they are preferable.

3.4.2 Comparing Spectrum-based and Mutation-
based approaches (RQ1)
The results of all the examined fault localization methods were
analyzed and compared according to the “Score” metric. Initially,
all the available test cases were executed in order to determine the
passed and failed test cases. Then, all the test cases were again
executed in the prototypes’ environment so that all the required
execution traces have been collected. Then, fault localization was
performed based on these traces and produced results regarding
the statement, avg-SBD and Loupe approaches. Regarding the
mutation method, Proteum produced and compiled all the
mutants. Then we executed all the test cases with all the mutants
and record which mutants are killed by each one of the test cases.
Based on these results, we performed the mutation-based fault
localization.

3.4.3 Special cases
Performing the present study involves handling some special
cases. Only executable statements were considered. This is a
constraint imposed by the functionality of the tool. Furthermore,
to reduce the mutation analysis computational needs (mutation
analysis requires huge computational resources [19]) the main
program version was only employed for the fault localization. A
similar process is applied to the other mutation fault localization
works [22, 25]. Additionally, in case of ties, i.e. statements with
the same suspiciousness values, were “ranked at the upper of their

ranks” [25]. This is a usual approach for this kind of experiments
e.g. [5, 25, 30].

The case of omission faults (the actual fault is a statement
missing from the source code) is handled by treating the next to
the missing statement as being the faulty one. Faults lying in non-
executable statements such as the variable initializations and
constants assignments need also a special treatment. These cases
were handled by treating the statements using the variables or the
constants as being faulty. These are mandatory assumptions since
no fault localization can pinpoint such faults. They are commonly
assumed by other fault localization studies such as [5, 25, 30].

3.4.4 Finding Sufficient Mutant Set (RQ2)
A selective set of operators with respect to fault localization,
investigated by RQ2, is determined based on the process of Figure
1. This process is named as the sufficient procedure. The
procedure seeks to determine the sufficient operator set by
incrementally selecting and adding to the sufficient set the less
costly operators, i.e. operators producing the least number of
mutants, among the most effective ones. In practice, it was
observed that after some iteration, all the evolved sets were almost
the same. Therefore, at each iteration of the process, the selected
sets (n sets to be evolved) were forced to be the ones that differ in
more than two operators among the less costly and most effective
identified sets (step 10 of sufficient procedure). This restriction
helped introducing some diversity into the selected sets and
reducing the risk of over-fitting to the employed set of faults.

To prevent over-fitting to these faults it is needed to provide
the procedure a more representative range of faults. Hence, the
utilized fault set was augmented with 100 additional faults per
studied program. These were selected at random from the
produced mutant sets and are called the mutant-faults. To this end,
the best sufficient sets on the last 3 iterations of the sufficient
procedure were selected. These sets were then improved
according to the mutant-fault sets. The sufficient set reported in
the next section was produced by employing the procedure of
Figure 1 with parameters N = 60, n = 6. The process was repeated
four times with a = 0 for the faults and a = 5, 4, 1 and 1 for the
mutants resulting in four different selective sets. These four sets
consume different percentages of mutants and achieve different
levels of effectiveness. We call these sets as the Selective1,
Selective2, Selective3 and Selective4 mutant sets.

Finally, to examine the localization ability of the selective
mutants, in addition to the employed faults and mutant-faults, a
different set of mutant-faults was also used. This set was selected
at random and it was composed of 700 mutants (100 per subject
program). The use of this set is important since it provides an
independent evaluation set to the one used by the sufficient
procedure. In the rest of the paper the first set of mutant-faults is
denoted as the mutant-fault-set1 or simple mutant-fault-set, while
the second one, as the mutant-fault-set2.

3.5 Threats to Validity
One issue related to the validity of the experiment is due to the
utilized test suites. It is possible that these tests are not
representative of those used by actual testers. Their choice was
mainly due to their extensive use in experimental studies.
Additionally, these tests were independently built by software
testing researchers [11]. Another threat that can be identified is
the use of mutants as substitutes of faults. This is something that
has already been studied in literature [6, 25]. The validity of this

practice has also been researched by Ali et al. [3] who conclude
that “no evidence to suggest that the use of mutants for this
purpose is invalid”. Additionally, the use of mutant-faults may
introduce a bias with the mutation fault localization due to the use
of these mutants both as faults and as location indicators. To
reduce this threat, all the mutant-faults were excluded from the
mutant set of the fault localization method.

Another possible threat is due to the employed tools. In
particular, bugs may influence the generation, compilation,
executions and determination of the killed mutants and thus, affect
the reported results. Manual checks were made in order to lighten
this threat. Additionally, all the tools used here have been used in
several mutation testing and fault localization experiments, like
[19, 25, 30]. Another issue can be related to the employed mutant
operator sets. Other sets may behave differently. However, the
utilized set was proposed independently of the present study and it
is composed of a wide range of operators involving all the C
language constructs [2].

Other issues are related to the generalization of the reported
results and to the use of the “Score” metric. The experiment
involves 7 programs with their accompanied faults and thus, it is
difficult to claim that the results are generalizable. Similarly, it is
difficult to claim that the employed metric represents the intended
effectiveness measure. However, in literature, the selected
benchmarks and the “Score” metric form the standard way of
evaluating the effectiveness of the fault localization approaches.
Clearly, additional studies are in need to answer the
abovementioned concerns.

4. RESULTS AND ANALYSIS
The present section presents the results regarding the comparison
of the fault localization techniques, Section 4.1, and the
identification of a sufficient mutant set, Section 4.2.

4.1 Comparison with other methods – (RQ1)
The comparative results, i.e. “score” values, of the examined fault
localization approaches are presented in the graph of Figure 2.
Following the lines of [7, 26, 30], the graph presents the
respective results grouped according to: 99-100%, 90-100%, 80-
100%, 70-100%, 60-100%, 50-100%, 40-100%, 30-100%, 20-
100%, 10-100%, 0-100%, “score” ranges. Specifically, the y-axis
of Figure 2 records the ratio of the faults that are effectively
localized in the “score” ranges recorded by the x-axis. In other
words x-axis represents the ratio of statements, over the whole
executable ones, that do not need to be analyzed during the fault
localization process. Hence, higher values on this plot indicate
less effort by the programmer and thus, higher fault localization
effectiveness.

For example, based on the results of Figure 2, a developer will be
able to locate approximately 90% of faults when he examines the
10% of the programs’ code2 and employs the mutation-based
approach. Similarly, with the same effort he will locate 58% of
faults if he employs Loupe while with avg-SBD he will locate
54% and only 44% with the statement one. Overall, these results
indicate that the mutation-based method is far more effective than
all the other examined approaches. It can be argued that the
differences are practically significant since the mutation method
localizes effectively more faults in all the examined ranges.
Additionally, the difference in the whole range from 70% to 100%
is higher than 15% in favor of the mutation approach. The mean
value for all the faults of the mutation approach is 95% while for
Loupe is 84%, 83% for avg-SBD and 77% for the statement one.

4.2 Selective Mutation evaluation – (RQ2)
The resulting sets of mutants produced by applying the Sufficient
Procedure are recorded in Table 2. The identified operator sets are
denoted as Selective1, Selective2, Selective3 and Selective4 and
consume the 22%, 27% 35% and 45% mutants of the whole
mutant set. Four selective sets are reported mainly due to the
different number of mutants they consume and the effectiveness
levels that they achieve. Tables 3 and 4 respectively record the
ratio of the effectively localized faults and mutant-faults at
various considered “score” ranges regarding the whole and the
selective sets of mutants. These results strongly suggest that the
identified mutant sets are approximately of the equal effectiveness
as the one containing all mutants.

2 Only the executable statements are considered.

0	

0.2	

0.4	

0.6	

0.8	

1	

99%	
 90%	
 80%	
 70%	
 60%	
 50%	
 40%	
 30%	
 20%	
 10%	
 0%	

%
of
	
 lo
ca
liz
ed
	
 fa
ul
ts
	

%statements	
 not	
 needing	
 inspection	
 	

Statement	

avg-­‐SBD	

Loupe	

Mutation	

 OP: set of mutant operators
 Set CurrSet = [];
 Set SuffOp = [];

Step 1. Score = 0;
Step 2. for each mutant operator op in OP {
Step 3. CurrSet = op;
Step 4. SuffOp.add(CurrSet);
 }
Step 5. for each set CurrSet in SuffOp {
Step 6. for each mutant operator op in OP {
Step 7. Perform fault localization with respect to op + CurrSet;
Step 8. Evaluate fault localization Scores;
 }
 }
Step 9. CurrSet = Select the N sets with the highest Scores;
Step 10. SuffOp = Select n sets with the less number of
mutants from CurrSet;
Step 11. CurrScore = Sum of scores in SuffOp;
Step 12. if (|CurrScore - Score| < a){
Step 13. Score = CurrScore;
Step 14. Goto step 2;
 }
Step 15. return CurrSet;

Figure 1. Sufficient Procedure: determining sufficient set
of mutant operators

Figure 2. Comparison of the Mutation, avg-SBD, Loupe
and Statement fault localization methods.

Table 2. Selective mutant Sets

Selective Set Operators %Mutants considered

Selective1 u-Cccr, u-OAAN, u-OCNG, u-Oido, u-OLLN, u-ORSN, u-SSDL, u-STRP,
u-VGSR 22%

Selective2 u-Cccr, u-OARN, u-OASN, u-OCNG, u-Oido, u-OLLN, u-ORRN, u-ORSN,
u-SBRC, u-SSDL, u-STRP, u-VTWD 27%

Selective3
u-Cccr, u-OABA, u-OARN, u-OASN, u-OCNG, u-OEAA, u-Oido, u-OLLN,

u-ORRN, u-ORSN, u-SBRC, u-SSDL, u-STRP, u-VGSR, u-VTWD 35%

Selective4
u-Cccr, u-OABA, u-OARN, u-OASN, u-OCNG, u-OEAA, u-Oido, u-OLLN,

u-ORRN, u-ORSN, u-SBRC, u-SSDL, u-STRP, u-VLSR, u-VTWD 45%

This is somehow expected, since the selective set was chosen
based on these mutant-faults. The question that is raised here, is
whether the selective sets are representative of the whole set. To
address this issue, statistical analysis was performed in order to
determine whether the selective sets have statistical differences
with the whole set of mutants. This analysis was performed on all
the fault sets (faults, mutant-fault-set1 and mutant-fault-set2).
Recall that mutant-fault-set2 was chosen from the whole mutant
set by randomly selecting 100 different to the mutant-fault-set1
mutants per program. Table 5 records the p-values of the
statistical comparisons of the selective sets and the whole set of
mutants. These results reveal that there is no statistically
significant difference between all mutants and the selective sets.

5. DISCUSSION
Mutation analysis is a powerful technique with application on
many software engineering problems. However, its main obstacle
is the vast number of mutants that it introduces. Thus, scalability
issues can be raised. This is an open research issue of the method
and requires additional research. However, the results presented in
this paper do make a major step towards this direction by
identifying sufficient subsets of mutant operators. Testing large
programs with the use of mutation analysis is only possible with

the use of small mutant subsets. This is evident from the recent
studies e.g. [4, 9] of mutation which all use a selective form of
mutation testing. Thus, it can be argued that without a selective
mutation approach large programs will remain intractable.

Software testing activities are accomplished before those of
debugging. This fact gives debugging the opportunity to reuse
information from the testing process. Our approach can gain many
benefits from this observation since it can reuse some, if not all,
the information required by mutant execution. Additionally, the
process can be combined with other testing approaches like the
higher order mutation [14], the equivalent mutant isolation [16]
and the automated generation of assertions [9]. If such approaches
are used, our approach will need to perform only the mutant
executions that were not made during testing. These executions
involve the test execution of mutants that did not employed in the
testing stage or those that were ignored by the testing process for
optimization reasons.

6. RELATED WORK
Both fault localization and mutation analysis are topics well
studied by the literature. However, only a few and recent works
combine them. This section gives first a brief description of fault
localization works and then of mutation analysis ones.

Table 3. Percentage of Located Faults
W.R.T Score Ranges

Table 4. Percentage of Located Mutant-Faults
W.R.T Score Ranges

Score Mutation Selective1 Selective2 Selective3 Selective4 Score Mutation Selective1 Selective2 Selective3 Selective4

Average 95.42% 95.53% 96.08% 96.06% 96.12% Average 95.26% 94.01% 94.17% 94.82% 94.97%
99-100% 40.46% 39.69% 43.51% 45.04% 45.04% 99-100% 30.14% 28.00% 26.71% 28.86% 29.29%
90-99% 89.31% 89.31% 90.84% 90.84% 90.84% 90-99% 87.86% 84.57% 85.43% 86.00% 87.14%
80-90% 93.13% 94.66% 93.13% 94.66% 93.89% 80-90% 94.43% 90.29% 91.71% 92.43% 93.43%
70-80% 96.95% 96.95% 97.71% 96.95% 96.18% 70-80% 96.00% 96.71% 96.43% 98.00% 98.00%
60-70% 96.95% 99.24% 99.24% 99.24% 99.24% 60-70% 99.43% 98.00% 97.86% 98.86% 98.86%
50-60% 99.24% 99.24% 99.24% 99.24% 99.24% 50-60% 99.86% 99.14% 98.71% 99.29% 99.29%
40-50% 99.24% 99.24% 99.24% 99.24% 99.24% 40-50% 100.00% 99.71% 99.57% 99.71% 99.71%
30-40% 100.00% 100.00% 100.00% 100.00% 100.00% 30-40% 100.00% 99.86% 99.71% 99.86% 99.86%
20-30% 100.00% 100.00% 100.00% 100.00% 100.00% 20-30% 100.00% 100.00% 100.00% 100.00% 100.00%
10-20% 100.00% 100.00% 100.00% 100.00% 100.00% 10-20% 100.00% 100.00% 100.00% 100.00% 100.00%
0-10% 100.00% 100.00% 100.00% 100.00% 100.00% 0-10% 100.00% 100.00% 100.00% 100.00% 100.00%

Table 5. Statistical Comparison (P-Values) of ALL operators and Selective Sets

 Selective1 Selective2 Selective3 Selective4
Faults 0.5908 0.4702 0.4658 0.4330

Mutant-Faults-Set1 0.0837 0.0968 0.4839 0.5602
Mutant-Faults-Set2 0.0697 0.1283 0.7961 0.8213

6.1.1 Fault Localization
One of the first and most popular fault localization approach is
Tarantula, which was introduced by Jones et al. [15]. Tarantula is
a statement-based method that uses a similar coefficient to Ochiai
formula. However, Abreu et al. [7] showed that the Ochiai
formula is more effective. The use of program branches and du-
pairs instead of program statements was suggested by Marsi [18],
who showed that they are more effective. This approach was later
extended by Santelices et al. [6] who presented a unified way of
applying all these advances. Additionally, the study of Santelices
et al. [6] revealed that there is not a specific spectra entity that
provides always the best results. Therefore, they propose to
combine the measures in order to increase the fault localization
accuracy. This approach was later inspired Yu et al. [12] who
suggested a different way to combine the methods and get better
results. In the same lines, Wong et al. [5] provided some heuristics
that were shown to be better than Tarantula.

Other related techniques, like the one of Baah et al. [5], build
probabilistic models based on program dependencies to assign the
statement suspiciousness values. Yoo et al. [29] employed
information theory in order to prioritize the execution of test
cases. Their aim is to execute the tests of a regression test suite in
a way that it maximizes the accuracy of fault localization. Jeffrey
et al. [25] proposed an approach that replaces program values.
Thus, the variables of the program statements are replaced with
others during runtime and comparing the effect on the output of
the program. If the output is corrected then the faulty statement is
reported as the most suspicious one.

Fault localization is dependent on the utilized test suites.
Therefore, one way to assist the fault localization process is by
adding and/or removing test cases. Baudry et al. [6] suggested
optimizing the test suite generation to improve the fault
localization accuracy. This approach is complimentary to ours
since it aims at producing test cases that will be used by the
approach in the localization process.

6.1.2 Mutation Analysis
The use of mutation analysis in directing the testing process has
been suggested over three decades [21]. Since its initial
suggestion, many works have been introduced with an increasing
trend over the last years, as it is revealed by the recent survey of
Jia and Harman [13]. Most relevant are those that focus on
reducing the cost of the approach by either a) reducing the
required time to generate and execute the sought mutants or b) by
reducing their number.

Regarding the issue a), the mutant schemata technique [13]
has been suggested as a way to reduce the cost of compiling the
mutant programs. Similarly, weak-firm mutation [13, 24] has
been proposed as a way of reducing the computational cost of
mutant execution. These, approaches are orthogonal to the one
presented here. Since they aim at reducing the time required to
introduce and execute the mutants, they can be applied
independently to the selected operators.

With respect to the number of mutants, issue b), several
approaches have been studied. The most naïve one is random
sampling [23, 28]. By randomly selecting a set of mutants their
number can be reduced with a small effect on their effectiveness
[23, 28]. Other approaches aim at selecting a small but
representative set of operators. Wong and Mathur [28] proposed
the use of two operators for Fortran programs. This work was later

refined by Offutt et al. [20] who suggested the use of five
operators. These five operators are the most commonly used in
literature studies like [4, 9, 24]. In the same lines Barbosa et al.
[27] suggested the use of ten mutant operators for the C language.
Later, the study of Siami Namin et al. [19] suggested the use of 28
mutant operators. All these works are different from the present
one since they target on testing and not on fault localization.

A different approach to reduce the number of mutants has
also been suggested based on the notion of higher order mutation
[14]. These methods try to reduce the mutants by injecting more
than one defect at the same time. Thus, instead of having mutants
based on one simple syntactic changes, first order mutants, the
mutants may have multiple syntactic changes, higher order
mutants. These methods actually increase the number of the
mutants since higher order mutants are all the possible
combinations of the first order mutants. Thus, a selection process
has to be performed. One way is the random sampling or based on
some special characteristics of the mutants like their program
location [23]. Other possible ways are based on the use of search-
based approaches [14]. All these approaches are different from the
present one since they aim at testing and not at fault localization.

7. CONCLUSIONS AND FUTURE WORK
This paper addresses the issue of mutant selection for mutation-
based fault localization. This is an important problem of mutation
analysis [19, 21]. Without a proper mutant selection, vast
computational demands are needed. Additionally, the effective
application of the method is highly dependent on the quality of the
employed mutants. To this end, the present paper identifies
representative sets of mutant operators for the context of fault
localization. The identified operator sets are capable of having
almost the same effectiveness with the whole set of mutant
operators despite requiring 80% less mutants.

Generally, the use of mutation analysis for debugging
purposes is a relatively new direction of research. It has also a
great potential since it can be combined with the testing process
[22, 25]. The results of the present paper complement the previous
research on this topic by drastically reducing the cost of the
approach. They also show that the mutation fault localization can
be significantly more effective than some of the most advanced
approaches found in literature. Putting these two findings together
opens the way towards the practical application of the method.

Future work includes performing empirical studies on the
Object Oriented programming paradigm. Additionally, we seek to
compare our findings with other subjects and link them with the
testing process. Such an attempt will identify sufficient mutant
sets capable to effectively drive both the testing and debugging
activities. Finally, the use of higher order mutation is another
direction of research. Research on higher order mutation [14]
shows that it can be beneficial. However, it is not clear how to
integrate this method in order to effectively localize faults.

8. REFERENCES
[1] Abreu, R., Zoeteweij, P. and Gemund, A.J.C. van 2007. On

the Accuracy of Spectrum-based Fault Localization.
Proceedings of the Testing: Academic and Industrial
Conference Practice and Research Techniques -
MUTATION. IEEE Computer Society.

[2] Agrawal, H., DeMillo, R.A., Hathaway, B., Hsu, W., Hsu,
W., Krauser, E.W., Martin, R.J., Mathur, A.P. and Spafford,

E. 1989. Design of Mutant Operators for the C Programming
Language. Purdue University.

[3] Ali, S., Andrews, J.H., Dhandapani, T. and Wang, W. 2009.
Evaluating the Accuracy of Fault Localization Techniques.
Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering. IEEE
Computer Society.

[4] Andrews, J.H., Briand, L.C., Labiche, Y. and Namin, A.S.
2006. Using Mutation Analysis for Assessing and Comparing
Testing Coverage Criteria. IEEE Trans. Softw. Eng. 32, 8
(2006), 608–624.

[5] Baah, G.K., Podgurski, A. and Harrold, M.J. 2008. The
probabilistic program dependence graph and its application
to fault diagnosis. Proceedings of the 2008 international
symposium on Software testing and analysis. ACM.

[6] Baudry, B., Fleurey, F. and Traon, Y. Le 2006. Improving
test suites for efficient fault localization. Proceedings of the
28th international conference on Software engineering.
ACM.

[7] Cleve, H. and Zeller, A. 2005. Locating causes of program
failures. Proceedings of the 27th international conference on
Software engineering. ACM.

[8] Delamaro, M. and Maldonado, J.C. 1996. Proteum - A Tool
for the Assessment of Test Adequacy for C Programs.
Proceedings of the Conference on Performability in
Computing Systems (1996), 79–95.

[9] Fraser, G. and Zeller, A. 2011. Mutation-Driven Generation
of Unit Tests and Oracles. Software Engineering, IEEE
Transactions on. PP, 99 (2011), 1.

[10] Le Goues, C., Dewey-Vogt, M., Forrest, S. and Weimer, W.
2012. A systematic study of automated program repair:
fixing 55 out of 105 bugs for $8 each. Proceedings of the
2012 International Conference on Software Engineering
(Piscataway, NJ, USA, 2012), 3–13.

[11] Harder, M., Mellen, J. and Ernst, M.D. 2003. Improving test
suites via operational abstraction. Proceedings of the 25th
International Conference on Software Engineering. IEEE
Computer Society.

[12] Hutchins, M., Foster, H., Goradia, T. and Ostrand, T. 1994.
Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. Proceedings of the
16th international conference on Software engineering. IEEE
Computer Society Press.

[13] Jia, Y. and Harman, M. 2010. An Analysis and Survey of the
Development of Mutation Testing. IEEE Transactions on
Software Engineering. 99, PrePrints (2010).

[14] Jia, Y. and Harman, M. 2009. Higher Order Mutation
Testing. Inf. Softw. Technol. 51, 10 (2009), 1379–1393.

[15] Jones, J.A. and Harrold, M.J. 2005. Empirical evaluation of
the tarantula automatic fault-localization technique.
Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering. ACM.

[16] Kintis, M., Papadakis, M. and Malevris, N. 2012. Isolating
First Order Equivalent Mutants via Second Order Mutation.
Software Testing, Verification, and Validation, International
Conference on. 0, (2012), 701–710.

[17] Liu, C., Yan, X., Fei, L., Han, J. and Midkiff, S.P. 2005.
SOBER: statistical model-based bug localization. SIGSOFT
Softw. Eng. Notes. 30, 5 (2005), 286–295.

[18] Masri, W. 2010. Fault localization based on information flow
coverage. Software Testing, Verification and Reliability. 20,
2 (2010), 121–147.

[19] Namin, A.S., Andrews, J.H. and Murdoch, D.J. 2008.
Sufficient mutation operators for measuring test
effectiveness. Proceedings of the 30th international
conference on Software engineering. ACM.

[20] Offutt, A.J., Lee, A., Rothermel, G., Untch, R.H. and Zapf,
C. 1996. An experimental determination of sufficient mutant
operators. ACM Trans. Softw. Eng. Methodol. 5, 2 (1996),
99–118.

[21] Offutt, J. 2011. A mutation carol: Past, present and future.
Information and Software Technology. 53, 10 (2011), 1098–
1107.

[22] Papadakis, M. and Le-Traon, Y. 2012. Using Mutants to
Locate “Unknown” Faults. Software Testing, Verification
and Validation (ICST), 2012 IEEE Fifth International
Conference on.

[23] Papadakis, M. and Malevris, N. 2010. An Empirical
Evaluation of the First and Second Order Mutation Testing
Strategies. Software Testing, Verification, and Validation
Workshops (ICSTW), 2010 Third International Conference
on (2010), 90–99.

[24] Papadakis, M. and Malevris, N. 2011. Automatically
performing weak mutation with the aid of symbolic
execution, concolic testing and search-based testing.
Software Quality Journal. 19, 4 (2011), 691–723.

[25] Papadakis, M. and Le Traon, Y. 2013. Metallaxis-FL:
mutation-based fault localization. Software Testing,
Verification and Reliability. (2013), n/a–n/a.

[26] Santelices, R., Jones, J.A., Yu, Y. and Harrold, M.J. 2009.
Lightweight fault-localization using multiple coverage types.
Proceedings of the 31st International Conference on
Software Engineering. IEEE Computer Society.

[27] Vincenzi, A.M.R., Maldonado, J.C., Barbosa, E.F. and
Delamaro, M.E. 2001. Unit and integration testing strategies
for C programs using mutation. Software Testing,
Verification and Reliability. 11, 4 (2001), 249–268.

[28] Wong, W.E. and Mathur, A.P. 1995. Reducing the cost of
mutation testing: an empirical study. J. Syst. Softw. 31, 3
(1995), 185–196.

[29] Yoo, S., Harman, M. and Clark, D. 2013. Fault localization
prioritization: Comparing information-theoretic and
coverage-based approaches. {ACM} {T}ransactions on
{S}oftware {E}ngineering {M}ethodology. 22, 3 (Jul. 2013),
19:1–19:29.

[30] Yu, K., Lin, M., Gao, Q., Zhang, H. and Zhang, X. 2011.
Locating faults using multiple spectra-specific models.
Proceedings of the 2011 ACM Symposium on Applied
Computing. ACM.

[31] Zhang, X. and Gupta, R. 2005. Whole execution traces and
their applications. ACM Trans. Archit. Code Optim. 2, 3
(2005), 301–334.

