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Abstract. Software Product Lines (SPLs) are families of software prod-
ucts that can be configured and managed through a combination of fea-
tures. Such products are usually represented with a Feature Model (FM).
Testing the entire SPL may not be conceivable due to economical or time
constraints and, more simply, because of the large number of potential
products. Thus, defining methods for generating test configurations is re-
quired, and is now a very active research topic for the testing community.
In this context, mutation has recently being advertised as a promising
technique. Mutation evaluates the ability of the test suite to detect de-
fective versions of the FM, called mutants. In particular, it has been
shown that existing test configurations achieving the mutation criterion
correlate with fault detection. Despite the potential benefit of mutation,
there is no approach which aims at generating test configurations for
SPL with respect to the mutation criterion. In this direction, we intro-
duce a search-based approach which explores the SPL product space to
generate product test configurations with the aim of detecting mutants.

Keywords: Software Product Lines, Test Configuration Generation, Search-
Based Software Engineering, Mutation, Feature Models

1 Introduction

Software Product Lines (SPLs) extend the concept of reusability by allowing to
configure and build tailored software product through a combination of differ-
ent features [1]. Each feature represents a functionality or an abstraction of a
functional requirement of the software product and is itself built from compo-
nents, objects, modules or subroutines. Thus, an SPL is defined as a family of
related software products that can easily be configured and managed, each prod-
uct sharing common features while having specific ones. The possible products
of an SPL are usually represented through a Feature Model (FM) which defines
the legal combination between the features of the SPL, facilitates the derivation
of new products and enables the automated analysis of the product line [2].

SPLs bring many benefits such as code resuability, a faster time to market,
reduced costs and a flexible productivity [3]. However, SPLs are challenging to



test due to the large amount of possible software that can be configured [4].
For instance, 20 optional features lead to 220 possible products to configure,
meaning more than a million of different software product that should be tested
independently. Such a testing budget is usually unavailable for economic, tech-
nical or time reasons, preventing the SPL from being exhaustively tested. Thus,
defining methods for generating test suites while giving enough confidence in
what is tested is required, and is now a very active research topic for the testing
community [5,6,7]. In this respect, Combinatorial Interaction Testing (CIT) [8]
is a popular technique that has been applied to SPLs to reduce the size of the
test suites. CIT operates by generating only the product configurations exercis-
ing feature interactions. While CIT has been shown to be effective for disclosing
bugs [9,10], recent work has shown mutation as a promising alternative to the
CIT criterion, also correlating with fault detection [11] for existing test suites.

Mutation evaluates the effectiveness of a test suite in terms of its ability to
detect faults [12]. It operates by first creating defective versions of the artifact
under test, called mutants and then by evaluating the ability of the test suite
to detect the introduced mutants. Mutation has been identified as a powerful
technique in several work, e.g., [13,14]. In this paper, defective versions of the
FM are produced. A mutant is thus an altered version of the rules defining
the legal feature associations. Such mutants are useful as they represent faulty
implementations of the FMs that should be tested. Thus, while CIT measures the
number of feature interactions of the FM exercised by the test suite, mutation
measures the number of mutants detected by the test suite. However, and despite
the potential benefit of mutation, there is no approach with the purpose of
generating product configurations for SPL with respect to the mutation criterion.

Towards this direction, we devise the first approach which generates SPL
test configurations using mutation of the FM. Since the SPL product space is
too large to be exhaustively explored, we introduce a search-based technique
based on the (1+1) Evolutionary Algorithm (EA) [15,16] in conjunction with a
constraint solver in order to only deal with products that are conform to the
FM. In order to guide the search towards the detection of mutants, four search
operators are proposed to both add and remove test configurations from the test
suite. The proposed approach solves the challenge of generating a test suite with
respect to the mutation criterion. Experiments on 10 FMs show the ability of the
proposed approach to generate test suites while with the purpose of mutation.

The remainder of this paper is organized as follows. Section 2 introduces the
background concepts underlying the proposed approach. Section 3 describes the
approach itself. Section 4 presents the conducted experiments. Finally, Section
5 discusses related work before Section 6 concludes the paper.

2 Background

2.1 Software Product Line Feature Models

A Feature Model (FM) encompasses the different features of the SPL and the
constraints linking them. Thus, it defines the possible products that can be



configured in an SPL. For instance, consider the FM of Figure 1. It contains 9
features. Some features are mandatory, which means included in every software
product, e.g., Draw. There are other type of constraints for the features, such as
implications or exclusion. For example, the presence of the Color feature in the
software product requires the Color Palette one to be present too.

The FM can be represented as a boolean formula. In this paper, each con-
straint is represented in Conjunctive Normal Form (CNF). Such formulas are a
conjunction of n clauses C1, ..., Cn, where a clause is a disjunction of m literals.
Here, a clause represents a constraint between features of the FM and a literal
represent a feature that is selected (fj) or not (fj):

FM =

n∧
i=1

(
m∨

j=1

lj

)
︸ ︷︷ ︸
constraints

, where lj = fj or fj .

For instance, the FM of Figure 1 encompasses n = 18 constraints represented
as follows in Conjunctive Normal Form:

f1, (f2 ∨ f1), (f1 ∨ f2), (f3 ∨ f1), (f1 ∨ f3), (f4 ∨ f1), (f5 ∨ f1), (f1 ∨ f5), (f6 ∨ f3), (f7 ∨
f3), (f3∨f6∨f7), (f8∨f5), (f9∨f5), (f5∨f8∨f9), (f8∨f9), (f7∨f4), (f4∨f8), (f9∨f4),
where RasterGraphicsEditor 7→ f1, Draw 7→ f2, Selection 7→ f3, ColorPalette7→ f4,
Rendering 7→ f5, Rectangular 7→ f6, ByColor 7→ f7, BlackWhite 7→ f8, Color 7→ f9.

Thus, with respect to the FM of Figure 1, the corresponding boolean formula is
a conjunction between all the constraints:

FM =
f1∧(f2∨f1)∧(f1∨f2)∧(f3∨f1)∧(f1∨f3)∧(f4∨f1)∧(f5∨f1)∧(f1∨f5)∧(f6∨f3)∧(f7∨
f3)∧(f3∨f6∨f7)∧(f8∨f5)∧(f9∨f5)∧(f5∨f8∨f9)∧(f8∨f9)∧(f7∨f4)∧(f4∨f8)∧(f9∨f4).

2.2 Software Product Line Test Configurations

We denote as a test configuration (TC) or product configuration to test the list of
features of the FM that are present or not in a given product. For instance, with

RasterGraphicsEditor

Draw ColorPaletteSelection Rendering

BlackWhite ColorRectangular ByColor

Mandatory

Optional
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Exclusive Or

Requires

Excludes

Fig. 1. A Feature Model of a raster graphic editor Software Product Line



respect to Figure 1, TC1 = {f1, f2, f3, f4, f5, f6, f7, f8, f9} is a TC representing
the software product proposing all the features except the rectangular selection
and the black and white rendering. This TC satisfies the constraints of the
FM that are described in the previous subsection. On the contrary, TC2 =
{f1, f2, f3, f4, f5, f6, f7, f8, f9} violates the constraint which specifies that f2 =
Draw is a mandatory feature. In the remainder of this paper, only TCs satisfying
the constraints of the FM are considered. To this end, a satisfiability (SAT)
solver is used. Finally, we denote as test suite (TS) a set of TCs.

3 Mutation-based Generation of Software Product Line
Test Configurations

The approach for generating TCs starts by creating mutants of the SPL FM.
Then, a search-based process based on the (1+1) Evolutionary Algorithm (EA)
[15,16] makes use of both the FM and the mutants to produce a set of test
configurations. The (1+1) EA is a hill climbing approach which has been proven
to be effective in several studies [17,18]. The overview of the approach is depicted
in Figure 2. The following sections describe the different steps of the approach.

3.1 Creation of Mutants of the Feature Model

The first step of the approach creates altered versions of the FM. Each altered
version is called a mutant and contains a defect within the boolean formula of
the FM. For instance, the two following mutants are produced from the FM
example of Figure 1:

M1 =
H

f1∧(f2∨f1)∧(f1∨f2)∧(f3∨f1)∧(f1∨f3)∧(f4∨f1)∧(f5∨f1)∧(f1∨f5)∧(f6∨f3)∧(f7∨
f3)∧(f3∨f6∨f7)∧(f8∨f5)∧(f9∨f5)∧(f5∨f8∨f9)∧(f8∨f9)∧(f7∨f4)∧(f4∨f8)∧(f9∨f4).

M2 =

f1∧(f2
H
∧f1)∧(f1∨f2)∧(f3∨f1)∧(f1∨f3)∧(f4∨f1)∧(f5∨f1)∧(f1∨f5)∧(f6∨f3)∧(f7∨

f3)∧(f3∨f6∨f7)∧(f8∨f5)∧(f9∨f5)∧(f5∨f8∨f9)∧(f8∨f9)∧(f7∨f4)∧(f4∨f8)∧(f9∨f4).

In M1, a literal has been negated whereas in M2, an operator OR has been
replaced by an AND one. It should be noted that the proposed approach is
independent from the way the mutants have been created and from the changes
they operate compared to the original FM.

Search-based 
processMutants

Feature
Model Time/generations

Product 
configurations

Fig. 2. Overview of the approach for generating test configurations.



3.2 The Search-based Process

Once the mutants are created, the search-based process starts to generate a
set of test configurations. The different steps of the approach are described in
Algorithm 1 and detailed in the following. First, an initial population is created
and its fitness is evaluated (line 1 and 2). Then, the population is evolved (line
3 to 10): search-operators try to improve the population by adding or removing
test configurations.

Individual An individual I or potential solution to the problem is a set of k ≥ 1
test configurations that are conform to the FM: I = {TC1, ..., TCk}.

Population The population P is composed of only one individual: P = {I}.

Initial Population The individual of the initial population is initialized by
generating randomly a test configuration that is conform to the FM by using a
SAT solver.

Fitness Evaluation The fitness f of an individual I is calculated by evaluating
how many mutants are not satisfied by at least one of the test configurations of I.
This is called mutation score. More formally, if we denote as M = {M1, ...,Mm}
the m mutants of the FM, the fitness f of an individual I is evaluated as follows:

F (I) =
|{Mi ∈M | ∃TCj ∈ I |TCj does not satisfy Mi}|

m
= mutation score,

where |A| denotes the cardinality of the set A. It should be noted that all the
test configurations considered are satisfying the FM since they belong to I.

Search Operators The approach makes use of four search operators that oper-
ate on an individual I. The operators are divided into two categories: operators
that add a new test configuration and operators that remove a test configuration.
The operators are depicted in Figure 3.

Algorithm 1 Generation of SPL Test Configurations
1: Create an initial population P with one individual I : P = {I} containing one test configuration
2: Evaluate the fitness f of I : f = F (I)
3: while budget (time, number of generations) do
4: Select a search operator with a probability p
5: Generate a new individual I′ using the selected search operator
6: Evaluate the fitness f ′ = F (I′)
7: if f ′ ≥ f then
8: I = I′

9: end if
10: end while
11: return I
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Fig. 3. The search operators used to generate a test configuration set.

– Add a random test configuration. This operator is presented in Fig-
ure 3(a). It adds to the considered individual a test configuration randomly
chosen from the space of all the test configurations of the FM .

– Remove a random test configuration. This operator is depicted in Fig-
ure 3(b). It randomly removes a test configuration from the individual.

– Smart add of a test configuration. This operator is presented in Figure
3(c). First, the altered constraints of the mutants are collected. Then, for
each constraint, the number of test configurations from I that do not satisfy
it is evaluated. This can be view as a mutant constraint score. Then, using
this score, a proportionate selection is performed in order to choose one of
these constraints. The idea is to promote the constraint that is the less not
satisfied by the test configurations of I. Then, the operators tries to select
a test configuration which is at the same time satisfying the FM and the



negation of the selected constraint. Doing so will result in a test configuration
that is able to violate a clause of the mutant and thus do not satisfy it.

– Smart remove of a test configuration. This operator is illustrated in
Figure 3(d). For each test configuration of I, it is evaluated the number
of mutants that are not satisfied. This can be view as a test configuration
score. Then, using this score, a proportionate selection is performed in order
to choose which test configuration to remove from I. The idea is to promote
the removal of test configurations that are not satisfying the less amount of
mutants.

4 Experiments

In this section, the proposed search-based approach, that we will denote as SB
is evaluated on a set of FMs. The objective of these experiments is to answer
the two following research questions:

– [RQ1] Is the proposed approach capable of generating test configurations lead-
ing to an improved mutation score?

– [RQ2] How does the proposed approach compare with a random one in terms
of mutation score and number of test configurations generated?

The first research question aims at evaluating whether the mutation score is
increasing over the generations of SB and if at a point it is able to converge. We
expect to see the mutation score increasing over the generations and stabilize
at a time. In practice, it means that the approach is capable of improving the
solution and reach a good enough mutation score.

The second question amounts to evaluate how SB compares with a naive ap-
proach. Since no other technique exists to perform a mutation-based generation
of TCs for SPLs, we compare it to a random one. To this end, two bases of
comparison are used. The first one is the evaluation of the mutation score when
generating the same number of test configurations with both approaches. The
second baseline evaluates the number of configurations required by the random
approach to achieve the same level of mutation score as SB. It is expected that a
higher mutation score than random for the same number of configurations will be
observed and we expect a random generation to necessitate more configurations
than SB to achieve a given mutation score.

In order to answer these two questions, an experiment is performed on 10
FMs of various size taken from the Software Product Line Online Tools (SPLOT)
[19], which is a widely used repository in the literature. The FMs used in the
experiments are described in Table 1. For each FM, it presents the number of
features, the number of constraints, the number of possible products and the
number of mutants used. The mutants have been created using the mutants
operator presented in Table 2 and taken from [20,21]. The mutants leading to
an invalid FM formula (e.g., a ∧ ¬a) and equivalent mutants (mutants that can
never be detected because they are always satisfied by any test configuration) are



Table 1. The feature models used for the experiments.

Feature Model Features Constraints Possible products Mutants

Cellphone 11 22 14 119
Counter Strike 24 35 18,176 208
SPL SimulES, PnP 32 54 73,728 291
DS Sample 41 201 6,912 1,086
Electronic Drum 52 119 331,776 664
Smart Home v2.2 30 82 3.87×109 434
Video Player 71 99 4.5×1013 582
Model Transformation 88 151 1.65×1013 851
Coche Ecologico 94 191 2.32×107 1,030
Printers 172 310 1.14×1027 1,829

Table 2. Mutation operators used in the experiments in order to alter feature models.

Mutation Operator Action

Literal Omission (LO) A literal is removed
Literal Negation (LN) A literal is negated
OR Reference (OR) An OR operator is replaced by AND

not considered in this work. Finally, in order to generate random configurations
from the FM and the mutants, the PicoSAT SAT solver [22] is used.

4.1 Approach Assessment (RQ1)

Setup SB has been performed 30 times independently per FM with 1,000 gen-
eration with an equal probability p = 0.25 to apply one of the four operators.

4.2 Results

The results are recorded in Figure 4 and Table 3. The figure presents the evolu-
tion of the mutation score averaged on all the FM and all the 30 runs while the
table presents detailed results per FM. With respect to Figure 4, one can see
the ability of the approach to improve the mutation score over the generations
and stabilize around 0.8. With respect to Table 3, one may observe that the ap-
proach is able to improve the mutation score for each of the considered FM, with
improvements of 68% in average for the DS Sample FM. Besides, there are very
small (0.03) or non-existent variations among the different final mutation score
achieved over the 30 runs, fact demonstrating the ability of SB to reach a good
solution at each execution of the approach. Finally, it should be noticed that
SB achieves the above-mentioned results using only a small number of genera-
tions (1,000 generations). This is an achievement since search-based techniques
usually require thousands of executions in order to be effective [18].



Table 3. Comparison between the initial and final mutation score achieved by the
proposed search-based approach on the 30 runs for 1,000 generations.

Generation 1 Generation 1,000
Feature Model \ Mutation score min max avg min max avg

Cellphone 0.39 0.66 0.5 0.79 0.79 0.79
Counter Strike 0.37 0.56 0.45 0.79 0.79 0.79
SPL SimuleES, PnP 0.42 0.62 0.49 0.7 0.7 0.7
DS Sample 0.17 0.27 0.22 0.9 0.9 0.9
Electronic Drum 0.38 0.56 0.44 0.78 0.78 0.78
Smart Home v2.2 0.45 0.66 0.54 0.89 0.89 0.89
Video Player 0.36 0.55 0.45 0.69 0.72 0.71
Model Transformation 0.41 0.61 0.5 0.86 0.86 0.86
Coche Ecologico 0.44 0.57 0.49 0.8 0.8 0.8
Printers 0.35 0.45 0.41 0.74 0.75 0.75

4.3 Answering RQ1

The results presented in the previous section demonstrate the ability of SB to
both improve the mutation score over the generations and converge towards
an acceptable mutation score. Indeed, some mutants may not be detectable if
they are either leading to an invalid formula or an equivalent to the original
FM formula (i.e., there is no test configuration that cannot satisfy it), thus
limiting the maximum score achievable by the approach. In this work, we only
focus on the process of generating the test suite to maximize the mutation score.
Finally, we observe improvements in the mutation score of over 60% and a quick
convergence, with very small variations between each of the 30 runs, thus giving
confidence in the validity of the search approach.
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Fig. 4. Evolution of the mutation score over the 1,000 generations of the proposed
approach averaged on all the feature models for the 30 runs.



Table 4. Comparison between the search-based approach (SB) and a random one on
the following basis: (a) same number of test configurations and (b) same mutation score
(MS). Each approach has been performed 30 times independently. #Conf denotes the
number of test configurations. The execution time is in seconds.

SB approach Rand. same #Conf Rand. same MS

Feature Model 30 runs #Conf MS Time MS Time #Conf Time

min 3 0.79 2 0.48 0 4 0

Cellphone max 4 0.79 3 0.79 0 42 0

avg 3.46 0.79 2.66 0.67 0 12.4 0

min 7 0.8 9 0.68 0 22 0

Counter Strike max 11 0.8 11 0.75 1 109 2

avg 9.53 0.8 10.6 0.72 0.16 43.73 0.56

min 3 0.7 11 0.61 0 4 0

SPL SimulES, PnP max 5 0.7 13 0.7 1 30 1

avg 4.36 0.7 11.9 0.66 0.1 9.66 0.16

min 16 0.9 46 0.56 0 32 1

DS Sample max 17 0.9 49 0.77 1 114 8

avg 16.03 0.9 46.8 0.70 0.2 60.26 2.9

min 5 0.78 22 0.66 0 9 0

Electronic Drum max 8 0.78 27 0.77 1 29 1

avg 6.83 0.78 24.8 0.72 0 15.46 0.3

min 7 0.88 26 0.79 0 13 0

Smart Home v2.2 max 11 0.88 30 0.88 1 43 2

avg 8.36 0.88 28 0.84 0.1 22.7 0.66

min 14 0.69 53 0.62 0 161 19

Video Player max 22 0.72 65 0.65 1 1,000* 532

avg 18.86 0.71 59 0.64 0.5 518 183

min 8 0.86 54 0.77 0 15 0

Model Transfo. max 12 0.86 67 0.85 1 56 4

avg 9.36 0.86 59.2 0.82 0.2 31.13 1.86

min 11 0.8 75 0.71 0 17 1

Coche Ecologico max 14 0.8 89 0.77 1 57 7

avg 11.76 0.8 80 0.74 0. 31.36 2.9

min 25 0.74 443 0.67 2 149 110

Printers max 35 0.75 567 0.72 3 1,000* 4,928

avg 30 0.75 513 0.70 2.4 481 1,264

*The number of test configurations required by random to achieve the same mutation
score as SB has been limited to 1,000.

4.4 Comparison with Random (RQ2)

Setup SB has been performed 30 times independently per FM with 1,000 gen-
eration allowed. An equal probability p = 0.25 to apply one of the four operators
has been set. For each run of SB, a random one has been conducted in order to
(a) evaluate the mutation score achieved when randomly generating the same
number of TCs as the number proposed by SB, and (b) evaluate the amount of
generated TCs required by the random approach in order to achieved the same
mutation score. In the latter case, a limit of 1,000 TCs has been set.

Results The results are recorded in Table 4. It presents the minimum, maximum
and average number of TCs, mutation score (MS) achieved and execution time
in seconds for the following approaches: SB, random based on the same number
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Fig. 5. Search-based approach VS Random: distribution of the mutation score and
number of test configurations on the 30 runs.
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Fig. 6. Search-based approach VS Random: average values of the mutation score and
number of test configurations on the 30 runs.



of test configurations as SB and random based on the same mutation score as
SB. Besides, Figure 5 depicts the distribution of the values over the 30 runs and
Figure 6 presents the average values. From these results, one can see that SB
is quite stable, with small variations in both the mutation score and number of
configurations achieved (5(b) and 5(a)). Compared to random based on the same
number of configurations, SB always performs better in terms of mutation score.
For instance, for the DS Sample FM, there is a difference of 0.34 on minimum
mutation score achieved and 0.2 on the average one (Table 4). Regarding the
comparison based on the mutation score, the random approach requires much
more TCs to achieve the same mutation score. For instance, with respect to the
Video Player FM, the random approach requires in average more than 500 TCs
to reach a mutation score of 0.71 while SB only needs less than 20 (Figure 6(a)).
In addition, there were some cases, e.g., the Printers FM where the random
approach was not able to achieved the same mutation score as the one reached
by SB, requiring more than 1,000 TCs and more execution time than SB.

Answering RQ2 Our results show that SB outperforms the random approach.
We observed a difference between random and SB of up to 34 % in favor of SB.
Additionally, the random technique requires much more test configurations to
achieve a given mutation score. In some cases, it is not even able to terminate,
requiring more than 20 times more TCs. This shows the ability of SB to generate
TCs while at the same time maximizing the mutation score that can be achieved.

4.5 Threats to Validity

The experiments performed in this paper are subject to potential threats to-
wards their validity. First, the FMs employed are only a sample and thus the
generalization of theses results to all possible FMs is not certain. In particular,
using different models might lead to different results. In order to reduce this
threat, we selected 10 FMs of different size and complexity. Thus, we tried to
use a diversify and representative set of subjects. A second potential threat can
be due to the experiments themselves. First, there is a risk that the observed re-
sults happened by chance. To reduce this threat, we have repeated the execution
of both the proposed approach and the random one 30 times per FM. Doing so
allows reducing risks due to random effects. Another threat can be due to the
SAT solver used. Indeed, there is a risk that another solver will lead to differ-
ent results. We choose PicoSAT as it was easy to modify it to produce random
solutions. the same threat holds for the mutation operator used. We tried to em-
ploy various mutation operators that are relevant for FM formulas. This paper
aims at generating test configurations with the aim of detecting mutants. The
ability of finding faults is not evaluated. Regarding the mutation score achieved,
it is expected that giving more time to the search-based approach will provide
better results. Even if small differences are observed in the mutation score com-
pared to the random approach, this can be in practice leading to finding more
faults [11,17]. Finally, the presented results could be erroneous due to potential



bugs within the implementation of the described techniques. To minimize such
threats, we divided our implementation into separated modules. In addition, we
make publicly available the source code and the data used for the experiments.

5 Related Work

The use of metaheuristic search techniques for the purpose of the automatic gen-
eration of test data has been a burgeoning interest for researchers [23]. In this
context, several work have investigated the product configuration generation for
SPLs using a metaheuristic search. For instance, in [24], Ensan et al. aim at gen-
erating a test suite with a genetic algorithm by exploring the whole SPL product
space, including product that do not fulfill the FM constraints. In this work, we
only explore the space of product satisfying the FM, by using a SAT solver. The
importance but also the overhead induced by constraint solvers has been shown
in [4,25] and used in some work for the purpose of CIT. For instance, in [26],
Garvin et al. proposed a simulated annealing approach for generating configura-
tions based on CIT. In [27], a multi-objective genetic algorithm in conjunction
with a SAT solver was proposed by the authors with CIT as one of the objec-
tive to fulfill. There are also work exploring the whole search space to compute
the optimal test suite according to CIT, such as [28]. In this work, we propose
a simple hill-climbing-based approach in conjunction with the SAT solver. The
difference is that we do not consider CIT as an objective. The product config-
uration generation process is guided by the mutation score. An exact solving
technique can only be used for moderate size search spaces. In this paper, we
focus on larger SPLs where the product space cannot be fully explored. Finally,
there are work focusing on test case generation for each software product [29].

Mutation has been widely used for the purpose of testing and test generation,
e.g., [30,31]. With respect to the mutation of models such as FMs for SPL,
Henard et al. [20] introduced some operators and used mutants of FM in order
to evaluate the ability of a given test suite to find them. While the concept
of mutation score was used, it was only a way to evaluate a given test suite.
In this paper, the mutation score is used to guide the search for generating
test suites. Besides, it has been shown that measuring the mutation score of
a test suite with respect to a CIT model like FMs rather than measuring the
number of interactions covered gives a stronger correlation to code-level faults
[11]. In this paper, we used FMs represented as boolean formulas from which we
created mutants. There are several work who investigated the mutation of logic
formulas. For instance, Gargantini and Fraser devised a technique to generate
tests for possible faults of boolean expressions [32]. In this work, the smart add
search operator also aims at triggering the fault introduced in the mutant by
using a SAT solver. In the context of logic-based testing, Kaminski et al. [33]
proposed an approach to design tests depending on logical expressions. In this
paper, mutation operators are applied on the logic formula of the FM. The
objective is only to generate test configurations according to the mutants of the
FM formula.



6 Conclusion and Future Work

This paper devised an approach for generating test configurations for SPLs based
on mutation. The novelty of the proposed technique is the use of mutation of the
FM to guide the search, thus focusing on possible faulty implementation of the
FM that should be tested. To the authors knowledge, it is the first approach that
is performing so. The conducted experiments show the benefit of the approach
compared to a random one as it is able to both reduce the test suite size while
significantly increasing the mutation score. To enable the reproducibility of our
results, our implementation and the FMs used are publicly available at:

http://research.henard.net/SPL/SSBSE_2014/.

Future work spans in the three following directions. First, we will investigate
the influence of the parameters and study different variants of the algorithm. In
particular, we will compare with standard genetic algorithms. Second, we will
propose new operators for improving the search process. Finally, we will under-
take supplementary experimentations to further validate the presented findings.
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